{"title":"求解Lane-Emden型方程的Laguerre配点法","authors":"A. Zamiri, A. Borhanifar, A. Ghannadiasl","doi":"10.22034/CMDE.2020.35895.1621","DOIUrl":null,"url":null,"abstract":"In this paper, a Laguerre collocation method is presented in order to obtain numerical solutions for linear and nonlinear Lane-Emden type equations and their initial conditions. The basis of the present method is operational matrices with respect to modified generalized Laguerre polynomials(MGLPs) that transforms the solution of main equation and its initial conditions to the solution of a matrix equation corresponding to the system of algebraic equations with the unknown Laguerre coefficients. By solving this system, coefficients of approximate solution of the main problem will be determined. Implementation of the method is easy and has more accurate results in comparison with results of other methods.","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":"1 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Laguerre collocation method for solving Lane-Emden type equations\",\"authors\":\"A. Zamiri, A. Borhanifar, A. Ghannadiasl\",\"doi\":\"10.22034/CMDE.2020.35895.1621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Laguerre collocation method is presented in order to obtain numerical solutions for linear and nonlinear Lane-Emden type equations and their initial conditions. The basis of the present method is operational matrices with respect to modified generalized Laguerre polynomials(MGLPs) that transforms the solution of main equation and its initial conditions to the solution of a matrix equation corresponding to the system of algebraic equations with the unknown Laguerre coefficients. By solving this system, coefficients of approximate solution of the main problem will be determined. Implementation of the method is easy and has more accurate results in comparison with results of other methods.\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.35895.1621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.35895.1621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Laguerre collocation method for solving Lane-Emden type equations
In this paper, a Laguerre collocation method is presented in order to obtain numerical solutions for linear and nonlinear Lane-Emden type equations and their initial conditions. The basis of the present method is operational matrices with respect to modified generalized Laguerre polynomials(MGLPs) that transforms the solution of main equation and its initial conditions to the solution of a matrix equation corresponding to the system of algebraic equations with the unknown Laguerre coefficients. By solving this system, coefficients of approximate solution of the main problem will be determined. Implementation of the method is easy and has more accurate results in comparison with results of other methods.