HIV-1双延迟感染模型的最优控制

IF 1.1 Q2 MATHEMATICS, APPLIED
Nigar Ali, G. Zaman
{"title":"HIV-1双延迟感染模型的最优控制","authors":"Nigar Ali, G. Zaman","doi":"10.22034/CMDE.2020.31728.1482","DOIUrl":null,"url":null,"abstract":"A double time delayed- HIV-1 infection model with optimal controls functions is taken into account. The proposed model consists of double time delays and the following five compartments: uninfected CD4+ T cells, infected cells, double infected cells, human immunodeficiency virus and recombinant virus. The optimal control functions are introduced into the model. Then, the existence and uniqueness results for the optimal control pair are established. The optimality of system is derived and then solved numerically using a forward and backward difference scheme. The role of objective functional is to minimize the the density of infected cells; (ii) minimize free virus particles number; and (iii) maximize healthy cells density in blood","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal control of double delayed HIV-1 infection model of fighting a virus with another virus\",\"authors\":\"Nigar Ali, G. Zaman\",\"doi\":\"10.22034/CMDE.2020.31728.1482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A double time delayed- HIV-1 infection model with optimal controls functions is taken into account. The proposed model consists of double time delays and the following five compartments: uninfected CD4+ T cells, infected cells, double infected cells, human immunodeficiency virus and recombinant virus. The optimal control functions are introduced into the model. Then, the existence and uniqueness results for the optimal control pair are established. The optimality of system is derived and then solved numerically using a forward and backward difference scheme. The role of objective functional is to minimize the the density of infected cells; (ii) minimize free virus particles number; and (iii) maximize healthy cells density in blood\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2020.31728.1482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2020.31728.1482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

考虑了具有最优控制函数的双时滞HIV-1感染模型。该模型由双时间延迟和以下五个区室组成:未感染的CD4+ T细胞、感染细胞、双感染细胞、人类免疫缺陷病毒和重组病毒。在模型中引入了最优控制函数。然后,建立了最优控制对的存在唯一性结果。推导了系统的最优性,并采用正、后向差分格式进行了数值求解。目标功能的作用是尽量减少感染细胞的密度;(ii)尽量减少游离病毒颗粒数量;(三)最大限度提高血液中健康细胞的密度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control of double delayed HIV-1 infection model of fighting a virus with another virus
A double time delayed- HIV-1 infection model with optimal controls functions is taken into account. The proposed model consists of double time delays and the following five compartments: uninfected CD4+ T cells, infected cells, double infected cells, human immunodeficiency virus and recombinant virus. The optimal control functions are introduced into the model. Then, the existence and uniqueness results for the optimal control pair are established. The optimality of system is derived and then solved numerically using a forward and backward difference scheme. The role of objective functional is to minimize the the density of infected cells; (ii) minimize free virus particles number; and (iii) maximize healthy cells density in blood
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信