新型异养硝化好氧反硝化细菌stutzeri Pseudomonas KTB对废水中氨氮的去除研究

IF 2 Q3 Environmental Science
Mao-hong Zhou, Hai-ren Ye, Xiao-wei Zhao
{"title":"新型异养硝化好氧反硝化细菌stutzeri Pseudomonas KTB对废水中氨氮的去除研究","authors":"Mao-hong Zhou, Hai-ren Ye, Xiao-wei Zhao","doi":"10.2166/WQRJC.2015.031","DOIUrl":null,"url":null,"abstract":"The effects of culture conditions on a newly isolated Pseudomonas stutzeri KTB's ability to simultaneously perform heterotrophic nitrification and aerobic denitrification were investigated to determine its potential of application in nitrogen removal from wastewater. The results from experiments in the presence of 10 mmol/L of ammonium were as follows: succinate was the preferred carbon source, and the optimum C/N ratio, temperature, and initial pH were 10, 30 °C, and 7–8, respectively. Nitrogen removal took place not only in the logarithmic phase but also in the stationary phase. Under the optimum conditions, the nitrogen removal rate increased as the ammonium concentration elevated, until it was as high as 60 mmol/L. Meanwhile, the maximum specific growth rate decreased. The highest nitrogen removal rate of 0.977 mmol/L/h was observed at 60 mmol/L of ammonium and the maximum removal ratio of 85.6% at 40 mmol/L when the bacterial treatment for 48 h was completed. The strain was vulnerable to even higher ammonium loads. When incubated in anaerobically digested hennery wastewater containing 43.85 mmol/L of ammonium and 2.32 mmol/L of nitrate, the removal ratio and rate reached 82.4% and 0.397 mmol/L/h, respectively. The strain might be a great candidate for ammonium removal from wastewater.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2015.031","citationCount":"4","resultStr":"{\"title\":\"Ammonium removal by a novel heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas stutzeri KTB from wastewater\",\"authors\":\"Mao-hong Zhou, Hai-ren Ye, Xiao-wei Zhao\",\"doi\":\"10.2166/WQRJC.2015.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of culture conditions on a newly isolated Pseudomonas stutzeri KTB's ability to simultaneously perform heterotrophic nitrification and aerobic denitrification were investigated to determine its potential of application in nitrogen removal from wastewater. The results from experiments in the presence of 10 mmol/L of ammonium were as follows: succinate was the preferred carbon source, and the optimum C/N ratio, temperature, and initial pH were 10, 30 °C, and 7–8, respectively. Nitrogen removal took place not only in the logarithmic phase but also in the stationary phase. Under the optimum conditions, the nitrogen removal rate increased as the ammonium concentration elevated, until it was as high as 60 mmol/L. Meanwhile, the maximum specific growth rate decreased. The highest nitrogen removal rate of 0.977 mmol/L/h was observed at 60 mmol/L of ammonium and the maximum removal ratio of 85.6% at 40 mmol/L when the bacterial treatment for 48 h was completed. The strain was vulnerable to even higher ammonium loads. When incubated in anaerobically digested hennery wastewater containing 43.85 mmol/L of ammonium and 2.32 mmol/L of nitrate, the removal ratio and rate reached 82.4% and 0.397 mmol/L/h, respectively. The strain might be a great candidate for ammonium removal from wastewater.\",\"PeriodicalId\":54407,\"journal\":{\"name\":\"Water Quality Research Journal of Canada\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2166/WQRJC.2015.031\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal of Canada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/WQRJC.2015.031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2015.031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 4

摘要

研究了培养条件对新分离的stutzeri假单胞菌KTB同时进行异养硝化和好氧反硝化能力的影响,以确定其在废水脱氮中的应用潜力。在10 mmol/L铵的条件下,实验结果表明:琥珀酸盐为首选碳源,最佳C/N比为10,温度为30℃,初始pH为7 ~ 8。除对数相外,固定相也有脱氮现象。在最优条件下,随着氨氮浓度的升高,氮的去除率逐渐提高,最高可达60 mmol/L。同时,最大比生长率降低。在60 mmol/L的氨氮浓度下,氮去除率最高,为0.977 mmol/L/h;在40 mmol/L的氨氮浓度下,细菌处理48 h,氮去除率最高,为85.6%。该菌株易受更高铵负荷的影响。在含43.85 mmol/L铵和2.32 mmol/L硝酸盐的厌氧消化污水中培养,去除率和去除率分别达到82.4%和0.397 mmol/L/h。该菌株可能是去除废水中铵的一个很好的候选菌株。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ammonium removal by a novel heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas stutzeri KTB from wastewater
The effects of culture conditions on a newly isolated Pseudomonas stutzeri KTB's ability to simultaneously perform heterotrophic nitrification and aerobic denitrification were investigated to determine its potential of application in nitrogen removal from wastewater. The results from experiments in the presence of 10 mmol/L of ammonium were as follows: succinate was the preferred carbon source, and the optimum C/N ratio, temperature, and initial pH were 10, 30 °C, and 7–8, respectively. Nitrogen removal took place not only in the logarithmic phase but also in the stationary phase. Under the optimum conditions, the nitrogen removal rate increased as the ammonium concentration elevated, until it was as high as 60 mmol/L. Meanwhile, the maximum specific growth rate decreased. The highest nitrogen removal rate of 0.977 mmol/L/h was observed at 60 mmol/L of ammonium and the maximum removal ratio of 85.6% at 40 mmol/L when the bacterial treatment for 48 h was completed. The strain was vulnerable to even higher ammonium loads. When incubated in anaerobically digested hennery wastewater containing 43.85 mmol/L of ammonium and 2.32 mmol/L of nitrate, the removal ratio and rate reached 82.4% and 0.397 mmol/L/h, respectively. The strain might be a great candidate for ammonium removal from wastewater.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas: Impact of current and emerging contaminants on aquatic ecosystems Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk) Conservation and protection of aquatic environments Responsible resource development and water quality (mining, forestry, hydropower, oil and gas) Drinking water, wastewater and stormwater treatment technologies and strategies Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality Industrial water quality Used water: Reuse and resource recovery Groundwater quality (management, remediation, fracking, legacy contaminants) Assessment of surface and subsurface water quality Regulations, economics, strategies and policies related to water quality Social science issues in relation to water quality Water quality in remote areas Water quality in cold climates The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信