{"title":"通过连续质量平衡的废水处理操作数据的质量控制:处理缺失的测量和延迟的输出","authors":"A. Spindler, J. Krampe","doi":"10.2166/WQRJC.2015.056","DOIUrl":null,"url":null,"abstract":"Continuous mass balancing defines a new standard in data quality validation. Likewise relying on the principles of mass conservation it outperforms long-term static mass balancing approaches because faults in data can be assigned to their time of occurrence. This research was carried out with practical application to routine operational data in mind and two major aspects are investigated to make this application feasible. Sludge concentrations of typically balanced components (chemical oxygen demand, total nitrogen, total phosphate) are not routinely measured in wastewater treatment plants. Therefore they need to be determined from alternative, more frequent measurements such as total suspended solids. To provide the necessary statistical basis for such determination, monthly sludge sampling was found sufficient. Further, contrary to long-term static mass balancing, the effects of delay between input and output loads must not be neglected in continuous mass balancing based on daily data. While a storage/release approach did not give the desired results, the consideration of hydraulic retention (first-order flow dynamics) fundamentally improved the performance of the proposed method.","PeriodicalId":54407,"journal":{"name":"Water Quality Research Journal of Canada","volume":"50 1","pages":"228-239"},"PeriodicalIF":2.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2166/WQRJC.2015.056","citationCount":"1","resultStr":"{\"title\":\"Quality control of wastewater treatment operational data by continuous mass balancing: dealing with missing measurements and delayed outputs\",\"authors\":\"A. Spindler, J. Krampe\",\"doi\":\"10.2166/WQRJC.2015.056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous mass balancing defines a new standard in data quality validation. Likewise relying on the principles of mass conservation it outperforms long-term static mass balancing approaches because faults in data can be assigned to their time of occurrence. This research was carried out with practical application to routine operational data in mind and two major aspects are investigated to make this application feasible. Sludge concentrations of typically balanced components (chemical oxygen demand, total nitrogen, total phosphate) are not routinely measured in wastewater treatment plants. Therefore they need to be determined from alternative, more frequent measurements such as total suspended solids. To provide the necessary statistical basis for such determination, monthly sludge sampling was found sufficient. Further, contrary to long-term static mass balancing, the effects of delay between input and output loads must not be neglected in continuous mass balancing based on daily data. While a storage/release approach did not give the desired results, the consideration of hydraulic retention (first-order flow dynamics) fundamentally improved the performance of the proposed method.\",\"PeriodicalId\":54407,\"journal\":{\"name\":\"Water Quality Research Journal of Canada\",\"volume\":\"50 1\",\"pages\":\"228-239\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2166/WQRJC.2015.056\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal of Canada\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/WQRJC.2015.056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal of Canada","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/WQRJC.2015.056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Quality control of wastewater treatment operational data by continuous mass balancing: dealing with missing measurements and delayed outputs
Continuous mass balancing defines a new standard in data quality validation. Likewise relying on the principles of mass conservation it outperforms long-term static mass balancing approaches because faults in data can be assigned to their time of occurrence. This research was carried out with practical application to routine operational data in mind and two major aspects are investigated to make this application feasible. Sludge concentrations of typically balanced components (chemical oxygen demand, total nitrogen, total phosphate) are not routinely measured in wastewater treatment plants. Therefore they need to be determined from alternative, more frequent measurements such as total suspended solids. To provide the necessary statistical basis for such determination, monthly sludge sampling was found sufficient. Further, contrary to long-term static mass balancing, the effects of delay between input and output loads must not be neglected in continuous mass balancing based on daily data. While a storage/release approach did not give the desired results, the consideration of hydraulic retention (first-order flow dynamics) fundamentally improved the performance of the proposed method.
期刊介绍:
The Water Quality Research Journal publishes peer-reviewed, scholarly articles on the following general subject areas:
Impact of current and emerging contaminants on aquatic ecosystems
Aquatic ecology (ecohydrology and ecohydraulics, invasive species, biodiversity, and aquatic species at risk)
Conservation and protection of aquatic environments
Responsible resource development and water quality (mining, forestry, hydropower, oil and gas)
Drinking water, wastewater and stormwater treatment technologies and strategies
Impacts and solutions of diffuse pollution (urban and agricultural run-off) on water quality
Industrial water quality
Used water: Reuse and resource recovery
Groundwater quality (management, remediation, fracking, legacy contaminants)
Assessment of surface and subsurface water quality
Regulations, economics, strategies and policies related to water quality
Social science issues in relation to water quality
Water quality in remote areas
Water quality in cold climates
The Water Quality Research Journal is a quarterly publication. It is a forum for original research dealing with the aquatic environment, and should report new and significant findings that advance the understanding of the field. Critical review articles are especially encouraged.