{"title":"利用深度学习和不确定性测量进行肺癌早期诊断","authors":"M. Cifci, Sema Üzülmez","doi":"10.17341/gazimmfd.1094154","DOIUrl":null,"url":null,"abstract":"Derin Öğrenmenin (DÖ) teknikleriyle erken kanser tanısı son dönemlerde araştırmacılar arasında en çok üzerinde durulan konu olmuştur. Ayrıca pek çok araştırmada görüldüğü üzere DÖ’nın tıp alanında kullanımı günümüzde daha da önem kazanmaktadır. Araştırmacılar sağlık alanında çoğunlukla kanser ve kanser türleri teşhis ederken DÖ tekniklerinden yararlanmaktadır. Bunun başlıca nedeni akciğer kanserinden ölüm riskinin yüksek olmasıdır. Bu tür hastalıkların tanısında BT görüntülerinin net olmamasından dolayı, doğru karar vermede uzmanlar görüş ayrılıkları yaşamaktadır. Bu ve benzeri hastalıkları erken ve doğru tanılayabilen ve daha güvenilir sonuçlar verebilen DÖ karar verme mekanizmaları bir seçenek haline gelmiştir. Yapılan araştırmalara göre akciğer kanseri, dünya çapında ölümlerin en önde gelen nedenleri arasındadır. Akciğer kanseri sadece 2019 yılında tahmini 1,76 milyon insanın ölümden sorumludur. Sebepleri artıkça (ortalama aile öyküsü, sigara, yüksek tansiyon ve diğer popüler tıbbi nedenler) ölüm oranı ortalaması %80'in üzerinde arttığı gözlemlenmiştir. Olgular erken tanı konup, tedavi edilirse kanser kaynaklı ölümlerin oranının azalmakta olduğu görülmüştür. Hastalığın doğru saptanması tedavi edilmesinde önemli rol oynamaktadır. \nBu çalışmada Ayrık Dalgacık Dönüşümü (ADD) yaklaşımı ile DÖ tekniği birleştirilerek, 6053 akciğer tomografi veri seti (veri kaynağı, yaş grubu, coğrafi bölge vb. kısa bilgi) üzerinde işlem yapılmıştır. Hastanın kanser olup olmadığı, kanser olduğu takdirde ise bunun iyi huylu (benign) ya da kötü huylu (malign) olduğuna karar verilmesine çalışılmaktadır. Bilgisayarlı Tomografi (BT), görüntülerde öncelikle görüntü işleme aşamalarının yanı sıra ADD ile öznitelik çıkarımı yapılıp elde edilen veriler DÖ ’ya girdi verisi olarak kullanılır. Bu çalışmada iki metot önerilmiştir. Birinci yöntemde VGG-16, Inception v4, MobileNet v3 kullanılırken ikinci yöntemde AlexNet yöntemi uygulanmaktadır. Bu yöntem hem ADD kullanımı hem de iki aşamalı olması yönüyle yaygın kullanılan diğer tekniklerden farklıdır. Deneysel sonuçların yüksek performans gösterdiğini ve AlexNet’in %99, 86, MobileNet v3’ün %98,00, VGG-16 %95,50, Inception v4’ün ise %96,03 doğrulukta sonuç verdiği belirlenmiştir. Böylece akciğer hastalıklarının BT görüntülerinde kanser olup olmadığı, kanser ise hangi aşamada olduğu konusunda ön bilgi elde edilebilmektedir.","PeriodicalId":51103,"journal":{"name":"Journal of the Faculty of Engineering and Architecture of Gazi University","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Early diagnosis of lung cancer using deep learning and uncertainty measures\",\"authors\":\"M. Cifci, Sema Üzülmez\",\"doi\":\"10.17341/gazimmfd.1094154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Derin Öğrenmenin (DÖ) teknikleriyle erken kanser tanısı son dönemlerde araştırmacılar arasında en çok üzerinde durulan konu olmuştur. Ayrıca pek çok araştırmada görüldüğü üzere DÖ’nın tıp alanında kullanımı günümüzde daha da önem kazanmaktadır. Araştırmacılar sağlık alanında çoğunlukla kanser ve kanser türleri teşhis ederken DÖ tekniklerinden yararlanmaktadır. Bunun başlıca nedeni akciğer kanserinden ölüm riskinin yüksek olmasıdır. Bu tür hastalıkların tanısında BT görüntülerinin net olmamasından dolayı, doğru karar vermede uzmanlar görüş ayrılıkları yaşamaktadır. Bu ve benzeri hastalıkları erken ve doğru tanılayabilen ve daha güvenilir sonuçlar verebilen DÖ karar verme mekanizmaları bir seçenek haline gelmiştir. Yapılan araştırmalara göre akciğer kanseri, dünya çapında ölümlerin en önde gelen nedenleri arasındadır. Akciğer kanseri sadece 2019 yılında tahmini 1,76 milyon insanın ölümden sorumludur. Sebepleri artıkça (ortalama aile öyküsü, sigara, yüksek tansiyon ve diğer popüler tıbbi nedenler) ölüm oranı ortalaması %80'in üzerinde arttığı gözlemlenmiştir. Olgular erken tanı konup, tedavi edilirse kanser kaynaklı ölümlerin oranının azalmakta olduğu görülmüştür. Hastalığın doğru saptanması tedavi edilmesinde önemli rol oynamaktadır. \\nBu çalışmada Ayrık Dalgacık Dönüşümü (ADD) yaklaşımı ile DÖ tekniği birleştirilerek, 6053 akciğer tomografi veri seti (veri kaynağı, yaş grubu, coğrafi bölge vb. kısa bilgi) üzerinde işlem yapılmıştır. Hastanın kanser olup olmadığı, kanser olduğu takdirde ise bunun iyi huylu (benign) ya da kötü huylu (malign) olduğuna karar verilmesine çalışılmaktadır. Bilgisayarlı Tomografi (BT), görüntülerde öncelikle görüntü işleme aşamalarının yanı sıra ADD ile öznitelik çıkarımı yapılıp elde edilen veriler DÖ ’ya girdi verisi olarak kullanılır. Bu çalışmada iki metot önerilmiştir. Birinci yöntemde VGG-16, Inception v4, MobileNet v3 kullanılırken ikinci yöntemde AlexNet yöntemi uygulanmaktadır. Bu yöntem hem ADD kullanımı hem de iki aşamalı olması yönüyle yaygın kullanılan diğer tekniklerden farklıdır. Deneysel sonuçların yüksek performans gösterdiğini ve AlexNet’in %99, 86, MobileNet v3’ün %98,00, VGG-16 %95,50, Inception v4’ün ise %96,03 doğrulukta sonuç verdiği belirlenmiştir. Böylece akciğer hastalıklarının BT görüntülerinde kanser olup olmadığı, kanser ise hangi aşamada olduğu konusunda ön bilgi elde edilebilmektedir.\",\"PeriodicalId\":51103,\"journal\":{\"name\":\"Journal of the Faculty of Engineering and Architecture of Gazi University\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Faculty of Engineering and Architecture of Gazi University\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.17341/gazimmfd.1094154\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Faculty of Engineering and Architecture of Gazi University","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.17341/gazimmfd.1094154","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
摘要
近年来,利用深度学习技术对癌症进行早期诊断已成为研究人员中最普遍的。此外,许多研究表明,DNA在医学领域的应用在今天更加重要。研究人员经常在健康领域识别癌症和癌症类型,并将其用于DNA技术。首先,死于癌症的风险很高。Bu tür hastalıkların tanısında BT görüntülerinin net olmamasından dolayı,doğru karar vermede uzmanlar görsüşayrılıklrıyaşamaktadır。这种疾病和类似疾病已成为早期、准确和更可靠的DCC决策机制的一种选择。根据研究,癌症是全世界主要的死亡原因之一。癌症仅对2019年176万人的估计死亡负责。家庭故事、吸烟、高血压和其他流行的医学原因平均增加了80%。据观察,癌症相关死亡率在早期发现和治疗中呈下降趋势。在治疗疾病的正确方向上发挥作用是很重要的。在本练习中,结合ADD方法,共对数据集进行了6053次肺部断层扫描数据集(数据源、年龄组、图像区域等)。如果患者患有癌症,将确定其是否自给自足或不良。计算机断层扫描(BT)被用作DNA的输入数据以及图像处理的第一阶段。Buçalışmada iki metotönerilmiştir。第一种方法是在使用VGG-16、Inception v4和MobileNet v3时应用AlexNet方法。该方法在ADD的使用和两个步骤方面不同于通常使用的其他技术。实验结果表明,AlexNet 99、86、MobileNet v3 98.00%、VGG-16%95.50%、Inception v496.03%的性能得到了验证。所以,如果你的肺病在BT图像中有癌症,你可以得到癌症在哪里的信息。
Early diagnosis of lung cancer using deep learning and uncertainty measures
Derin Öğrenmenin (DÖ) teknikleriyle erken kanser tanısı son dönemlerde araştırmacılar arasında en çok üzerinde durulan konu olmuştur. Ayrıca pek çok araştırmada görüldüğü üzere DÖ’nın tıp alanında kullanımı günümüzde daha da önem kazanmaktadır. Araştırmacılar sağlık alanında çoğunlukla kanser ve kanser türleri teşhis ederken DÖ tekniklerinden yararlanmaktadır. Bunun başlıca nedeni akciğer kanserinden ölüm riskinin yüksek olmasıdır. Bu tür hastalıkların tanısında BT görüntülerinin net olmamasından dolayı, doğru karar vermede uzmanlar görüş ayrılıkları yaşamaktadır. Bu ve benzeri hastalıkları erken ve doğru tanılayabilen ve daha güvenilir sonuçlar verebilen DÖ karar verme mekanizmaları bir seçenek haline gelmiştir. Yapılan araştırmalara göre akciğer kanseri, dünya çapında ölümlerin en önde gelen nedenleri arasındadır. Akciğer kanseri sadece 2019 yılında tahmini 1,76 milyon insanın ölümden sorumludur. Sebepleri artıkça (ortalama aile öyküsü, sigara, yüksek tansiyon ve diğer popüler tıbbi nedenler) ölüm oranı ortalaması %80'in üzerinde arttığı gözlemlenmiştir. Olgular erken tanı konup, tedavi edilirse kanser kaynaklı ölümlerin oranının azalmakta olduğu görülmüştür. Hastalığın doğru saptanması tedavi edilmesinde önemli rol oynamaktadır.
Bu çalışmada Ayrık Dalgacık Dönüşümü (ADD) yaklaşımı ile DÖ tekniği birleştirilerek, 6053 akciğer tomografi veri seti (veri kaynağı, yaş grubu, coğrafi bölge vb. kısa bilgi) üzerinde işlem yapılmıştır. Hastanın kanser olup olmadığı, kanser olduğu takdirde ise bunun iyi huylu (benign) ya da kötü huylu (malign) olduğuna karar verilmesine çalışılmaktadır. Bilgisayarlı Tomografi (BT), görüntülerde öncelikle görüntü işleme aşamalarının yanı sıra ADD ile öznitelik çıkarımı yapılıp elde edilen veriler DÖ ’ya girdi verisi olarak kullanılır. Bu çalışmada iki metot önerilmiştir. Birinci yöntemde VGG-16, Inception v4, MobileNet v3 kullanılırken ikinci yöntemde AlexNet yöntemi uygulanmaktadır. Bu yöntem hem ADD kullanımı hem de iki aşamalı olması yönüyle yaygın kullanılan diğer tekniklerden farklıdır. Deneysel sonuçların yüksek performans gösterdiğini ve AlexNet’in %99, 86, MobileNet v3’ün %98,00, VGG-16 %95,50, Inception v4’ün ise %96,03 doğrulukta sonuç verdiği belirlenmiştir. Böylece akciğer hastalıklarının BT görüntülerinde kanser olup olmadığı, kanser ise hangi aşamada olduğu konusunda ön bilgi elde edilebilmektedir.
期刊介绍:
Gazi University Journal of the Faculty of Engineering and Architecture; Engineering qualifications described below and in the field of architecture research papers and invited articles by scanning is considered to be Turkish.