A. Prabhu, M. Venkata Ramanan, H. Venu, J. Jayaprabakar, M. Anish, Nivin Joy
{"title":"在棕榈油生物柴油-柴油混合物中使用氧化铜纳米颗粒的柴油发动机的排放和性能特性","authors":"A. Prabhu, M. Venkata Ramanan, H. Venu, J. Jayaprabakar, M. Anish, Nivin Joy","doi":"10.21278/tof.453012919","DOIUrl":null,"url":null,"abstract":"In the present experimental study, the influence of copper oxide (CuO) nanoparticles on emissions and performance of a 4.4 kW diesel engine powered by palm oil biodiesel have been analyzed. Palm oil biodiesel of 20% by volume was blended with diesel fuel and the resulting blend is termed as B20. The B20 test fuel blends were doped with CuO nanoparticles with concentrations of 25 ppm, 50 ppm, and 75 ppm. Experiments were carried out at 0%, 25%, 50%, 75%, and 100% engine loads at a constant speed (1,500 rpm). Performance parameters such as brake thermal efficiency (BTE) and brake specific energy consumption (BSEC), emission parameters such as carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HC), nitrogen oxides (NOx), and smoke opacity were analysed. It was observed that when CuO nanoparticles were used as additives for the B20 blend, BTE increased significantly by about 1.18%-7.69% and BSEC decreased considerably by about 4.12% 6.76%. In addition, when CuO nanoparticles were added, there were also substantial reductions in CO (2.21% 8.86%). Furthermore, there was a noticeable increase in HC (0.3% 9.78%), CO2 (2.38% 5.97%), and NOx emission levels (1.75% 5.27%) when compared to the B20 blend. However, in comparison to diesel fuel, all the emission levels were lower for all biodiesel blends except for NOx emissions. Overall, it was concluded that CuO nanoparticles could be considered as an appropriate petroleum additive for palm oil biodiesel blends.","PeriodicalId":49428,"journal":{"name":"Transactions of FAMENA","volume":"1 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Emission and Performance Characteristics of a Diesel Engine Using Copper Oxide Nanoparticles in Palm Oil Biodiesel-Diesel Blends\",\"authors\":\"A. Prabhu, M. Venkata Ramanan, H. Venu, J. Jayaprabakar, M. Anish, Nivin Joy\",\"doi\":\"10.21278/tof.453012919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present experimental study, the influence of copper oxide (CuO) nanoparticles on emissions and performance of a 4.4 kW diesel engine powered by palm oil biodiesel have been analyzed. Palm oil biodiesel of 20% by volume was blended with diesel fuel and the resulting blend is termed as B20. The B20 test fuel blends were doped with CuO nanoparticles with concentrations of 25 ppm, 50 ppm, and 75 ppm. Experiments were carried out at 0%, 25%, 50%, 75%, and 100% engine loads at a constant speed (1,500 rpm). Performance parameters such as brake thermal efficiency (BTE) and brake specific energy consumption (BSEC), emission parameters such as carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HC), nitrogen oxides (NOx), and smoke opacity were analysed. It was observed that when CuO nanoparticles were used as additives for the B20 blend, BTE increased significantly by about 1.18%-7.69% and BSEC decreased considerably by about 4.12% 6.76%. In addition, when CuO nanoparticles were added, there were also substantial reductions in CO (2.21% 8.86%). Furthermore, there was a noticeable increase in HC (0.3% 9.78%), CO2 (2.38% 5.97%), and NOx emission levels (1.75% 5.27%) when compared to the B20 blend. However, in comparison to diesel fuel, all the emission levels were lower for all biodiesel blends except for NOx emissions. Overall, it was concluded that CuO nanoparticles could be considered as an appropriate petroleum additive for palm oil biodiesel blends.\",\"PeriodicalId\":49428,\"journal\":{\"name\":\"Transactions of FAMENA\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of FAMENA\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/tof.453012919\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of FAMENA","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/tof.453012919","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Emission and Performance Characteristics of a Diesel Engine Using Copper Oxide Nanoparticles in Palm Oil Biodiesel-Diesel Blends
In the present experimental study, the influence of copper oxide (CuO) nanoparticles on emissions and performance of a 4.4 kW diesel engine powered by palm oil biodiesel have been analyzed. Palm oil biodiesel of 20% by volume was blended with diesel fuel and the resulting blend is termed as B20. The B20 test fuel blends were doped with CuO nanoparticles with concentrations of 25 ppm, 50 ppm, and 75 ppm. Experiments were carried out at 0%, 25%, 50%, 75%, and 100% engine loads at a constant speed (1,500 rpm). Performance parameters such as brake thermal efficiency (BTE) and brake specific energy consumption (BSEC), emission parameters such as carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HC), nitrogen oxides (NOx), and smoke opacity were analysed. It was observed that when CuO nanoparticles were used as additives for the B20 blend, BTE increased significantly by about 1.18%-7.69% and BSEC decreased considerably by about 4.12% 6.76%. In addition, when CuO nanoparticles were added, there were also substantial reductions in CO (2.21% 8.86%). Furthermore, there was a noticeable increase in HC (0.3% 9.78%), CO2 (2.38% 5.97%), and NOx emission levels (1.75% 5.27%) when compared to the B20 blend. However, in comparison to diesel fuel, all the emission levels were lower for all biodiesel blends except for NOx emissions. Overall, it was concluded that CuO nanoparticles could be considered as an appropriate petroleum additive for palm oil biodiesel blends.