Tania Alvis-Ccoropuna, J. F. Villasante-Benavides, G. A. Pauca-Tanco, J. P. Quispe-Turpo, C. Luque-Fernández
{"title":"秘鲁阿雷基帕Chalhuanca高安第斯湿地碳储存的计算与评估","authors":"Tania Alvis-Ccoropuna, J. F. Villasante-Benavides, G. A. Pauca-Tanco, J. P. Quispe-Turpo, C. Luque-Fernández","doi":"10.18271/ria.2021.314","DOIUrl":null,"url":null,"abstract":"High Andean wetlands are important ecosystems due to their ecosystem services. Carbon storage is a result of the low decomposition rate due to flooded soils and low temperatures. Consequently, this study estimated the carbon content stored in the high Andean wetland of Chalhuanca and calculated the economic value of this service. For this purpose, 30 samples were taken at random, establishing three carbon pools: aboveground biomass (leaves and stems), belowground biomass (roots), and organic soil. The samples were obtained with an auger-type device; each sample was dried at 65°C for at least 24 hours and the carbon content was determined using the Walkey-Black method and calculations and statistical tests were performed. The total carbon stored in relation to the area of the wetland was approximately 795,415.65 tons of CO2. The fraction of carbon per sample is higher in aerial biomass (49%), followed by organic soil (43.1%) and below ground biomass. On the other hand, the amount of carbon stored differs significantly between reservoirs, since organic soil stores the highest amount with 218.3 TC/ha (90%), followed by below-ground biomass (roots) with 19.7 TC/ha (8%), and above-ground biomass (leaves and stems) with 4.8 TC/ha (2%). Finally, the ecosystem service of carbon storage amounts to a cost of 6462.18 USD/ha, 5703132.34 USD in sum.","PeriodicalId":41861,"journal":{"name":"Revista Investigaciones Altoandinas-Journal of High Andean Research","volume":"1 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Cálculo y valoración del almacenamiento de carbono del humedal altoandino de Chalhuanca, Arequipa (Perú)\",\"authors\":\"Tania Alvis-Ccoropuna, J. F. Villasante-Benavides, G. A. Pauca-Tanco, J. P. Quispe-Turpo, C. Luque-Fernández\",\"doi\":\"10.18271/ria.2021.314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High Andean wetlands are important ecosystems due to their ecosystem services. Carbon storage is a result of the low decomposition rate due to flooded soils and low temperatures. Consequently, this study estimated the carbon content stored in the high Andean wetland of Chalhuanca and calculated the economic value of this service. For this purpose, 30 samples were taken at random, establishing three carbon pools: aboveground biomass (leaves and stems), belowground biomass (roots), and organic soil. The samples were obtained with an auger-type device; each sample was dried at 65°C for at least 24 hours and the carbon content was determined using the Walkey-Black method and calculations and statistical tests were performed. The total carbon stored in relation to the area of the wetland was approximately 795,415.65 tons of CO2. The fraction of carbon per sample is higher in aerial biomass (49%), followed by organic soil (43.1%) and below ground biomass. On the other hand, the amount of carbon stored differs significantly between reservoirs, since organic soil stores the highest amount with 218.3 TC/ha (90%), followed by below-ground biomass (roots) with 19.7 TC/ha (8%), and above-ground biomass (leaves and stems) with 4.8 TC/ha (2%). Finally, the ecosystem service of carbon storage amounts to a cost of 6462.18 USD/ha, 5703132.34 USD in sum.\",\"PeriodicalId\":41861,\"journal\":{\"name\":\"Revista Investigaciones Altoandinas-Journal of High Andean Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Investigaciones Altoandinas-Journal of High Andean Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18271/ria.2021.314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Investigaciones Altoandinas-Journal of High Andean Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18271/ria.2021.314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Cálculo y valoración del almacenamiento de carbono del humedal altoandino de Chalhuanca, Arequipa (Perú)
High Andean wetlands are important ecosystems due to their ecosystem services. Carbon storage is a result of the low decomposition rate due to flooded soils and low temperatures. Consequently, this study estimated the carbon content stored in the high Andean wetland of Chalhuanca and calculated the economic value of this service. For this purpose, 30 samples were taken at random, establishing three carbon pools: aboveground biomass (leaves and stems), belowground biomass (roots), and organic soil. The samples were obtained with an auger-type device; each sample was dried at 65°C for at least 24 hours and the carbon content was determined using the Walkey-Black method and calculations and statistical tests were performed. The total carbon stored in relation to the area of the wetland was approximately 795,415.65 tons of CO2. The fraction of carbon per sample is higher in aerial biomass (49%), followed by organic soil (43.1%) and below ground biomass. On the other hand, the amount of carbon stored differs significantly between reservoirs, since organic soil stores the highest amount with 218.3 TC/ha (90%), followed by below-ground biomass (roots) with 19.7 TC/ha (8%), and above-ground biomass (leaves and stems) with 4.8 TC/ha (2%). Finally, the ecosystem service of carbon storage amounts to a cost of 6462.18 USD/ha, 5703132.34 USD in sum.