奇异格式的切片谱序列及其应用

IF 0.5 Q3 MATHEMATICS
A. Krishna, Pablo Peláez
{"title":"奇异格式的切片谱序列及其应用","authors":"A. Krishna, Pablo Peláez","doi":"10.2140/akt.2018.3.657","DOIUrl":null,"url":null,"abstract":"We examine the slice spectral sequence for the cohomology of singular schemes with respect to various motivic T-spectra, especially the motivic cobordism spectrum. When the base field k admits resolution of singularities and X is a scheme of finite type over k, we show that Voevodsky's slice filtration leads to a spectral sequence for MGL(X) whose terms are the motivic cohomology groups of X defined using the cdh-hypercohomology. As a consequence, we establish an isomorphism between certain geometric parts of the motivic cobordism and motivic cohomology of X. A similar spectral sequence for the connective K-theory leads to a cycle class map from the motivic cohomology to the homotopy invariant K-theory of X. We show that this cycle class map is injective for projective schemes. We also deduce applications to the torsion in the motivic cohomology of singular schemes.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2016-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/akt.2018.3.657","citationCount":"4","resultStr":"{\"title\":\"The slice spectral sequence for singular schemes and applications\",\"authors\":\"A. Krishna, Pablo Peláez\",\"doi\":\"10.2140/akt.2018.3.657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine the slice spectral sequence for the cohomology of singular schemes with respect to various motivic T-spectra, especially the motivic cobordism spectrum. When the base field k admits resolution of singularities and X is a scheme of finite type over k, we show that Voevodsky's slice filtration leads to a spectral sequence for MGL(X) whose terms are the motivic cohomology groups of X defined using the cdh-hypercohomology. As a consequence, we establish an isomorphism between certain geometric parts of the motivic cobordism and motivic cohomology of X. A similar spectral sequence for the connective K-theory leads to a cycle class map from the motivic cohomology to the homotopy invariant K-theory of X. We show that this cycle class map is injective for projective schemes. We also deduce applications to the torsion in the motivic cohomology of singular schemes.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2016-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/akt.2018.3.657\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2018.3.657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2018.3.657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

我们研究了奇异格式的片谱序列对各种动力t谱的上同调性,特别是动力协同谱。当基场k允许奇异点的分辨,且X是k上的有限型格式时,我们证明了Voevodsky的切片滤波导致了MGL(X)的谱序列,其项是X的动机上同调群,用cdh-超上同调定义。因此,我们建立了x的动机上同构与动机上同构的某些几何部分之间的同构。一个相似的连接k理论的谱序列导致了一个从x的动机上同构到x的同伦不变k理论的循环类映射。我们还推导了奇异方案的动机上同调中挠性的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The slice spectral sequence for singular schemes and applications
We examine the slice spectral sequence for the cohomology of singular schemes with respect to various motivic T-spectra, especially the motivic cobordism spectrum. When the base field k admits resolution of singularities and X is a scheme of finite type over k, we show that Voevodsky's slice filtration leads to a spectral sequence for MGL(X) whose terms are the motivic cohomology groups of X defined using the cdh-hypercohomology. As a consequence, we establish an isomorphism between certain geometric parts of the motivic cobordism and motivic cohomology of X. A similar spectral sequence for the connective K-theory leads to a cycle class map from the motivic cohomology to the homotopy invariant K-theory of X. We show that this cycle class map is injective for projective schemes. We also deduce applications to the torsion in the motivic cohomology of singular schemes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信