栈的负k理论的消失定理

IF 0.5 Q3 MATHEMATICS
Marc Hoyois, A. Krishna
{"title":"栈的负k理论的消失定理","authors":"Marc Hoyois, A. Krishna","doi":"10.2140/akt.2019.4.439","DOIUrl":null,"url":null,"abstract":"We prove that the homotopy algebraic K-theory of tame quasi-DM stacks satisfies cdh-descent. We apply this descent result to prove that if X is a Noetherian tame quasi-DM stack and i < -dim(X), then K_i(X)[1/n] = 0 (resp. K_i(X, Z/n) = 0) provided that n is nilpotent on X (resp. is invertible on X). Our descent and vanishing results apply more generally to certain Artin stacks whose stabilizers are extensions of finite group schemes by group schemes of multiplicative type.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2017-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/akt.2019.4.439","citationCount":"18","resultStr":"{\"title\":\"Vanishing theorems for the negative K-theory of\\nstacks\",\"authors\":\"Marc Hoyois, A. Krishna\",\"doi\":\"10.2140/akt.2019.4.439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the homotopy algebraic K-theory of tame quasi-DM stacks satisfies cdh-descent. We apply this descent result to prove that if X is a Noetherian tame quasi-DM stack and i < -dim(X), then K_i(X)[1/n] = 0 (resp. K_i(X, Z/n) = 0) provided that n is nilpotent on X (resp. is invertible on X). Our descent and vanishing results apply more generally to certain Artin stacks whose stabilizers are extensions of finite group schemes by group schemes of multiplicative type.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/akt.2019.4.439\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2019.4.439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2019.4.439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 18

摘要

证明了拟dm叠的同伦代数k理论满足cdh-下降。我们利用这一下降结果证明了如果X是Noetherian驯服拟dm堆栈且i < -dim(X),则K_i(X)[1/n] = 0 (resp。K_i(X, Z/n) = 0),条件是n在X上幂零。在X上是可逆的)。我们的下降和消失的结果更普遍地适用于某些Artin堆栈,这些堆栈的稳定器是有限群格式由乘型群格式的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vanishing theorems for the negative K-theory of stacks
We prove that the homotopy algebraic K-theory of tame quasi-DM stacks satisfies cdh-descent. We apply this descent result to prove that if X is a Noetherian tame quasi-DM stack and i < -dim(X), then K_i(X)[1/n] = 0 (resp. K_i(X, Z/n) = 0) provided that n is nilpotent on X (resp. is invertible on X). Our descent and vanishing results apply more generally to certain Artin stacks whose stabilizers are extensions of finite group schemes by group schemes of multiplicative type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信