{"title":"根堆的g理论与等变k理论","authors":"A. Dhillon, Ivan Kobyzev","doi":"10.2140/akt.2019.4.151","DOIUrl":null,"url":null,"abstract":"Using the description of the category of quasi-coherent sheaves on a root stack given in the paper of N. Borne and A. Vistoli, we study the G-theory of root stacks via localisation methods. We apply our results to the study of equivariant K-theory of algebraic varieties under certain conditions.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2015-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/akt.2019.4.151","citationCount":"3","resultStr":"{\"title\":\"G-theory of root stacks and equivariant\\nK-theory\",\"authors\":\"A. Dhillon, Ivan Kobyzev\",\"doi\":\"10.2140/akt.2019.4.151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the description of the category of quasi-coherent sheaves on a root stack given in the paper of N. Borne and A. Vistoli, we study the G-theory of root stacks via localisation methods. We apply our results to the study of equivariant K-theory of algebraic varieties under certain conditions.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2015-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/akt.2019.4.151\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2019.4.151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2019.4.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Using the description of the category of quasi-coherent sheaves on a root stack given in the paper of N. Borne and A. Vistoli, we study the G-theory of root stacks via localisation methods. We apply our results to the study of equivariant K-theory of algebraic varieties under certain conditions.