0环在曲面上的𝔸1-equivalence,II

IF 0.5 Q3 MATHEMATICS
Qizheng Yin, Yi Zhu
{"title":"0环在曲面上的𝔸1-equivalence,II","authors":"Qizheng Yin, Yi Zhu","doi":"10.2140/akt.2018.3.379","DOIUrl":null,"url":null,"abstract":"In this paper, we study $\\mathbb{A}^1$-equivalence classes of zero cycles on open complex algebraic surfaces. We prove the logarithmic version of Mumford's theorem on zero cycles and prove that log Bloch's conjecture holds for quasiprojective surfaces with log Kodaira dimension $-\\infty$.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":"1 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2015-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2140/akt.2018.3.379","citationCount":"1","resultStr":"{\"title\":\"𝔸1-equivalence of zero cycles on surfaces,\\nII\",\"authors\":\"Qizheng Yin, Yi Zhu\",\"doi\":\"10.2140/akt.2018.3.379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study $\\\\mathbb{A}^1$-equivalence classes of zero cycles on open complex algebraic surfaces. We prove the logarithmic version of Mumford's theorem on zero cycles and prove that log Bloch's conjecture holds for quasiprojective surfaces with log Kodaira dimension $-\\\\infty$.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2015-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2140/akt.2018.3.379\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2018.3.379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2018.3.379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了开复代数曲面上零环的$\mathbb{A}^1$ -等价类。我们证明了零环上Mumford定理的对数版本,并证明了log Bloch猜想对具有log Kodaira维数的拟射影曲面$-\infty$成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
𝔸1-equivalence of zero cycles on surfaces, II
In this paper, we study $\mathbb{A}^1$-equivalence classes of zero cycles on open complex algebraic surfaces. We prove the logarithmic version of Mumford's theorem on zero cycles and prove that log Bloch's conjecture holds for quasiprojective surfaces with log Kodaira dimension $-\infty$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信