teichmller空间上的交点数和一些度量

Pub Date : 2020-01-01 DOI:10.18910/73741
Zongliang Sun, Hui Guo
{"title":"teichmller空间上的交点数和一些度量","authors":"Zongliang Sun, Hui Guo","doi":"10.18910/73741","DOIUrl":null,"url":null,"abstract":"Let T (X) be the Teichmüller space of a closed surface X of genus g ≥ 2, C(X) be the space of geodesic currents on X, and L : T (X)→ C(X) be the embedding introduced by Bonahon which maps a hyperbolic metric to its corresponding Liouville current. In this paper, we compare some quantitative relations and topological behaviors between the intersection number and the Teichmüller metric, the length spectrum metric and Thurston’s asymmetric metrics on T (X), respectively.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersection number and some metrics on Teichmüller space\",\"authors\":\"Zongliang Sun, Hui Guo\",\"doi\":\"10.18910/73741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let T (X) be the Teichmüller space of a closed surface X of genus g ≥ 2, C(X) be the space of geodesic currents on X, and L : T (X)→ C(X) be the embedding introduced by Bonahon which maps a hyperbolic metric to its corresponding Liouville current. In this paper, we compare some quantitative relations and topological behaviors between the intersection number and the Teichmüller metric, the length spectrum metric and Thurston’s asymmetric metrics on T (X), respectively.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/73741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/73741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设T (X)为g属≥2的封闭曲面X的teichm ller空间,C(X)为X上测地线电流的空间,L: T (X)→C(X)为Bonahon引入的将双曲度规映射到相应的刘维尔电流的嵌入。本文分别比较了交点数与T (X)上的teichm ller度量、长度谱度量和Thurston不对称度量之间的定量关系和拓扑行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Intersection number and some metrics on Teichmüller space
Let T (X) be the Teichmüller space of a closed surface X of genus g ≥ 2, C(X) be the space of geodesic currents on X, and L : T (X)→ C(X) be the embedding introduced by Bonahon which maps a hyperbolic metric to its corresponding Liouville current. In this paper, we compare some quantitative relations and topological behaviors between the intersection number and the Teichmüller metric, the length spectrum metric and Thurston’s asymmetric metrics on T (X), respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信