{"title":"teichmller空间上的交点数和一些度量","authors":"Zongliang Sun, Hui Guo","doi":"10.18910/73741","DOIUrl":null,"url":null,"abstract":"Let T (X) be the Teichmüller space of a closed surface X of genus g ≥ 2, C(X) be the space of geodesic currents on X, and L : T (X)→ C(X) be the embedding introduced by Bonahon which maps a hyperbolic metric to its corresponding Liouville current. In this paper, we compare some quantitative relations and topological behaviors between the intersection number and the Teichmüller metric, the length spectrum metric and Thurston’s asymmetric metrics on T (X), respectively.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"57 1","pages":"141-149"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersection number and some metrics on Teichmüller space\",\"authors\":\"Zongliang Sun, Hui Guo\",\"doi\":\"10.18910/73741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let T (X) be the Teichmüller space of a closed surface X of genus g ≥ 2, C(X) be the space of geodesic currents on X, and L : T (X)→ C(X) be the embedding introduced by Bonahon which maps a hyperbolic metric to its corresponding Liouville current. In this paper, we compare some quantitative relations and topological behaviors between the intersection number and the Teichmüller metric, the length spectrum metric and Thurston’s asymmetric metrics on T (X), respectively.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"57 1\",\"pages\":\"141-149\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/73741\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/73741","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设T (X)为g属≥2的封闭曲面X的teichm ller空间,C(X)为X上测地线电流的空间,L: T (X)→C(X)为Bonahon引入的将双曲度规映射到相应的刘维尔电流的嵌入。本文分别比较了交点数与T (X)上的teichm ller度量、长度谱度量和Thurston不对称度量之间的定量关系和拓扑行为。
Intersection number and some metrics on Teichmüller space
Let T (X) be the Teichmüller space of a closed surface X of genus g ≥ 2, C(X) be the space of geodesic currents on X, and L : T (X)→ C(X) be the embedding introduced by Bonahon which maps a hyperbolic metric to its corresponding Liouville current. In this paper, we compare some quantitative relations and topological behaviors between the intersection number and the Teichmüller metric, the length spectrum metric and Thurston’s asymmetric metrics on T (X), respectively.
期刊介绍:
Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.