亚纯极小曲面的偏差与扩展

Pub Date : 2020-01-01 DOI:10.18910/73739
A. Kowalski, I. Marchenko
{"title":"亚纯极小曲面的偏差与扩展","authors":"A. Kowalski, I. Marchenko","doi":"10.18910/73739","DOIUrl":null,"url":null,"abstract":"In this paper we consider the influence that the number of separated maximum points of the norm of a meromorphic minimal surface (m.m.s) has on the magnitudes of growth and value distribution. We present sharp estimations of spread of m.m.s in terms of Nevanlinna’s defect, magnitude of deviation and the number of separated points of the norm of m.m.s. We also give examples showing that the estimates are sharp.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Deviations and Spreads of Meromorphic Minimal Surfaces\",\"authors\":\"A. Kowalski, I. Marchenko\",\"doi\":\"10.18910/73739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the influence that the number of separated maximum points of the norm of a meromorphic minimal surface (m.m.s) has on the magnitudes of growth and value distribution. We present sharp estimations of spread of m.m.s in terms of Nevanlinna’s defect, magnitude of deviation and the number of separated points of the norm of m.m.s. We also give examples showing that the estimates are sharp.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/73739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/73739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了亚纯极小曲面的模的分离极大点数目对其生长量和值分布的影响。我们根据Nevanlinna缺陷、偏差大小和mmms范数的分离点数给出了mmms扩展的尖锐估计。我们还给出了表明估计是尖锐的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Deviations and Spreads of Meromorphic Minimal Surfaces
In this paper we consider the influence that the number of separated maximum points of the norm of a meromorphic minimal surface (m.m.s) has on the magnitudes of growth and value distribution. We present sharp estimations of spread of m.m.s in terms of Nevanlinna’s defect, magnitude of deviation and the number of separated points of the norm of m.m.s. We also give examples showing that the estimates are sharp.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信