{"title":"亚纯极小曲面的偏差与扩展","authors":"A. Kowalski, I. Marchenko","doi":"10.18910/73739","DOIUrl":null,"url":null,"abstract":"In this paper we consider the influence that the number of separated maximum points of the norm of a meromorphic minimal surface (m.m.s) has on the magnitudes of growth and value distribution. We present sharp estimations of spread of m.m.s in terms of Nevanlinna’s defect, magnitude of deviation and the number of separated points of the norm of m.m.s. We also give examples showing that the estimates are sharp.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On Deviations and Spreads of Meromorphic Minimal Surfaces\",\"authors\":\"A. Kowalski, I. Marchenko\",\"doi\":\"10.18910/73739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the influence that the number of separated maximum points of the norm of a meromorphic minimal surface (m.m.s) has on the magnitudes of growth and value distribution. We present sharp estimations of spread of m.m.s in terms of Nevanlinna’s defect, magnitude of deviation and the number of separated points of the norm of m.m.s. We also give examples showing that the estimates are sharp.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/73739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/73739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Deviations and Spreads of Meromorphic Minimal Surfaces
In this paper we consider the influence that the number of separated maximum points of the norm of a meromorphic minimal surface (m.m.s) has on the magnitudes of growth and value distribution. We present sharp estimations of spread of m.m.s in terms of Nevanlinna’s defect, magnitude of deviation and the number of separated points of the norm of m.m.s. We also give examples showing that the estimates are sharp.