具有非线性黏度的标量守恒律Cauchy问题解的稀疏波的全局渐近性

Pub Date : 2020-01-01 DOI:10.18910/73745
A. Matsumura, Natsumi Yoshida
{"title":"具有非线性黏度的标量守恒律Cauchy问题解的稀疏波的全局渐近性","authors":"A. Matsumura, Natsumi Yoshida","doi":"10.18910/73745","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the asymptotic behavior of solutions to the Cauchy problem for the scalar viscous conservation law where the far field states are prescribed. Especially, we deal with the case when the viscosity is of non-Newtonian type, including a pseudo-plastic case. When the corresponding Riemann problem for the hyperbolic part admits a Riemann solution which consists of single rarefaction wave, under a condition on nonlinearity of the viscosity, it is proved that the solution of the Cauchy problem tends toward the rarefaction wave as time goes to infinity, without any smallness conditions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Global asymptotics toward the rarefaction waves for solutions to the Cauchy problem of the scalar conservation law with nonlinear viscosity\",\"authors\":\"A. Matsumura, Natsumi Yoshida\",\"doi\":\"10.18910/73745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the asymptotic behavior of solutions to the Cauchy problem for the scalar viscous conservation law where the far field states are prescribed. Especially, we deal with the case when the viscosity is of non-Newtonian type, including a pseudo-plastic case. When the corresponding Riemann problem for the hyperbolic part admits a Riemann solution which consists of single rarefaction wave, under a condition on nonlinearity of the viscosity, it is proved that the solution of the Cauchy problem tends toward the rarefaction wave as time goes to infinity, without any smallness conditions.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/73745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/73745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了标量粘性守恒律柯西问题解的渐近性质,其中远场态是规定的。特别地,我们处理了粘度为非牛顿型的情况,包括伪塑性情况。当双曲型部分对应的黎曼问题在黏度非线性的条件下允许由单个稀薄波组成的黎曼解时,证明了柯西问题的解在没有任何小条件的情况下,随着时间趋近于无穷大而趋向于稀薄波。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Global asymptotics toward the rarefaction waves for solutions to the Cauchy problem of the scalar conservation law with nonlinear viscosity
In this paper, we investigate the asymptotic behavior of solutions to the Cauchy problem for the scalar viscous conservation law where the far field states are prescribed. Especially, we deal with the case when the viscosity is of non-Newtonian type, including a pseudo-plastic case. When the corresponding Riemann problem for the hyperbolic part admits a Riemann solution which consists of single rarefaction wave, under a condition on nonlinearity of the viscosity, it is proved that the solution of the Cauchy problem tends toward the rarefaction wave as time goes to infinity, without any smallness conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信