{"title":"一类具有logistic型增长和超线性生产的n维抛物-抛物型趋化系统解的整体存在性","authors":"E. Nakaguchi, Koichi Osaki","doi":"10.18910/67749","DOIUrl":null,"url":null,"abstract":"We study the global existence of solutions to an $n$-dimensional parabolic-parabolic system for chemotaxis with logistic-type growth. We introduce superlinear production of a chemoattractant. We then show the global existence of solutions in $L_p$ space $( p > n )$ under certain relations between the degradation and production orders.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"55 1","pages":"51-70"},"PeriodicalIF":0.5000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"GLOBAL EXISTENCE OF SOLUTIONS TO AN n-DIMENSIONAL PARABOLIC-PARABOLIC SYSTEM FOR CHEMOTAXIS WITH LOGISTIC-TYPE GROWTH AND SUPERLINEAR PRODUCTION\",\"authors\":\"E. Nakaguchi, Koichi Osaki\",\"doi\":\"10.18910/67749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the global existence of solutions to an $n$-dimensional parabolic-parabolic system for chemotaxis with logistic-type growth. We introduce superlinear production of a chemoattractant. We then show the global existence of solutions in $L_p$ space $( p > n )$ under certain relations between the degradation and production orders.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"55 1\",\"pages\":\"51-70\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/67749\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/67749","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
GLOBAL EXISTENCE OF SOLUTIONS TO AN n-DIMENSIONAL PARABOLIC-PARABOLIC SYSTEM FOR CHEMOTAXIS WITH LOGISTIC-TYPE GROWTH AND SUPERLINEAR PRODUCTION
We study the global existence of solutions to an $n$-dimensional parabolic-parabolic system for chemotaxis with logistic-type growth. We introduce superlinear production of a chemoattractant. We then show the global existence of solutions in $L_p$ space $( p > n )$ under certain relations between the degradation and production orders.
期刊介绍:
Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.