MetaCIDS:基于区块链和在线联合学习的Metaverse隐私保护协同入侵检测

Vu Tuan Truong;Long Bao Le
{"title":"MetaCIDS:基于区块链和在线联合学习的Metaverse隐私保护协同入侵检测","authors":"Vu Tuan Truong;Long Bao Le","doi":"10.1109/OJCS.2023.3312299","DOIUrl":null,"url":null,"abstract":"Metaverse is expected to rely on massive Internet of Things (IoT) connections so it inherits various security threats from the IoT network and also faces other sophisticated attacks related to virtual reality technology. As traditional security approaches show various limitations in the large-scale distributed metaverse, this paper proposes MetaCIDS, a novel collaborative intrusion detection (CID) framework that leverages metaverse devices to collaboratively protect the metaverse. In MetaCIDS, a federated learning (FL) scheme based on unsupervised autoencoder and an attention-based supervised classifier enables metaverse users to train a CID model using their local network data, while the blockchain network allows metaverse users to train a machine learning (ML) model to detect intrusion network flows over their monitored local network traffic, then submit verifiable intrusion alerts to the blockchain to earn metaverse tokens. Security analysis shows that MetaCIDS can efficiently detect zero-day attacks, while the training process is resistant to SPoF, data tampering, and up to 33% poisoning nodes. Performance evaluation illustrates the efficiency of MetaCIDS with 96% to 99% detection accuracy on four different network intrusion datasets, supporting both multi-class detection using labeled data and anomaly detection trained on unlabeled data.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"4 ","pages":"253-266"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8782664/10016900/10239541.pdf","citationCount":"0","resultStr":"{\"title\":\"MetaCIDS: Privacy-Preserving Collaborative Intrusion Detection for Metaverse based on Blockchain and Online Federated Learning\",\"authors\":\"Vu Tuan Truong;Long Bao Le\",\"doi\":\"10.1109/OJCS.2023.3312299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metaverse is expected to rely on massive Internet of Things (IoT) connections so it inherits various security threats from the IoT network and also faces other sophisticated attacks related to virtual reality technology. As traditional security approaches show various limitations in the large-scale distributed metaverse, this paper proposes MetaCIDS, a novel collaborative intrusion detection (CID) framework that leverages metaverse devices to collaboratively protect the metaverse. In MetaCIDS, a federated learning (FL) scheme based on unsupervised autoencoder and an attention-based supervised classifier enables metaverse users to train a CID model using their local network data, while the blockchain network allows metaverse users to train a machine learning (ML) model to detect intrusion network flows over their monitored local network traffic, then submit verifiable intrusion alerts to the blockchain to earn metaverse tokens. Security analysis shows that MetaCIDS can efficiently detect zero-day attacks, while the training process is resistant to SPoF, data tampering, and up to 33% poisoning nodes. Performance evaluation illustrates the efficiency of MetaCIDS with 96% to 99% detection accuracy on four different network intrusion datasets, supporting both multi-class detection using labeled data and anomaly detection trained on unlabeled data.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"4 \",\"pages\":\"253-266\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8782664/10016900/10239541.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10239541/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10239541/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Metaverse预计将依赖于大规模的物联网(IoT)连接,因此它继承了物联网网络的各种安全威胁,还面临着与虚拟现实技术相关的其他复杂攻击。由于传统的安全方法在大规模分布式元宇宙中显示出各种局限性,本文提出了MetaCIDS,这是一种新型的协同入侵检测(CID)框架,利用元宇宙设备协同保护元宇宙。在MetaCIDS中,基于无监督自动编码器和基于注意力的监督分类器的联合学习(FL)方案使元宇宙用户能够使用其本地网络数据训练CID模型,而区块链网络允许元宇宙用户训练机器学习(ML)模型,以检测其监控的本地网络流量上的入侵网络流,然后向区块链提交可验证的入侵警报,以赚取元宇宙代币。安全分析表明,MetaCIDS可以有效地检测零日攻击,而训练过程可以抵抗SPoF、数据篡改和高达33%的节点中毒。性能评估表明,MetaCIDS在四个不同的网络入侵数据集上的检测准确率为96%至99%,支持使用标记数据的多类检测和在未标记数据上训练的异常检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MetaCIDS: Privacy-Preserving Collaborative Intrusion Detection for Metaverse based on Blockchain and Online Federated Learning
Metaverse is expected to rely on massive Internet of Things (IoT) connections so it inherits various security threats from the IoT network and also faces other sophisticated attacks related to virtual reality technology. As traditional security approaches show various limitations in the large-scale distributed metaverse, this paper proposes MetaCIDS, a novel collaborative intrusion detection (CID) framework that leverages metaverse devices to collaboratively protect the metaverse. In MetaCIDS, a federated learning (FL) scheme based on unsupervised autoencoder and an attention-based supervised classifier enables metaverse users to train a CID model using their local network data, while the blockchain network allows metaverse users to train a machine learning (ML) model to detect intrusion network flows over their monitored local network traffic, then submit verifiable intrusion alerts to the blockchain to earn metaverse tokens. Security analysis shows that MetaCIDS can efficiently detect zero-day attacks, while the training process is resistant to SPoF, data tampering, and up to 33% poisoning nodes. Performance evaluation illustrates the efficiency of MetaCIDS with 96% to 99% detection accuracy on four different network intrusion datasets, supporting both multi-class detection using labeled data and anomaly detection trained on unlabeled data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信