{"title":"具有无限延迟的脉冲随机逻辑模型的持续与消光","authors":"Chun Lu, X. Ding","doi":"10.18910/58895","DOIUrl":null,"url":null,"abstract":"Abstract This paper considers an impulsive stochastic logistic mode l with infinite delay at the phase space Cg. Firstly, the definition of solution to an impulsive stochas tic functional differential equation with infinite delay is establi shed. Based on this definition, we show that our model has a unique global positive solution. Then we establish the sufficient conditions for extinction, nonpersistence in th e mean, weak persistence and stochastic permanence of the solution. The threshold betwe en weak persistence and extinction is obtained. In addition, the effects of impulsi ve perturbation and delay on persistence and extinction are discussed, respectively. F inally, numerical simulations are introduced to support the theoretical analysis results .","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"53 1","pages":"1-29"},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Persistence and extinction of an impulsive stochastic logistic model with infinite delay\",\"authors\":\"Chun Lu, X. Ding\",\"doi\":\"10.18910/58895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper considers an impulsive stochastic logistic mode l with infinite delay at the phase space Cg. Firstly, the definition of solution to an impulsive stochas tic functional differential equation with infinite delay is establi shed. Based on this definition, we show that our model has a unique global positive solution. Then we establish the sufficient conditions for extinction, nonpersistence in th e mean, weak persistence and stochastic permanence of the solution. The threshold betwe en weak persistence and extinction is obtained. In addition, the effects of impulsi ve perturbation and delay on persistence and extinction are discussed, respectively. F inally, numerical simulations are introduced to support the theoretical analysis results .\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"53 1\",\"pages\":\"1-29\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/58895\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/58895","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Persistence and extinction of an impulsive stochastic logistic model with infinite delay
Abstract This paper considers an impulsive stochastic logistic mode l with infinite delay at the phase space Cg. Firstly, the definition of solution to an impulsive stochas tic functional differential equation with infinite delay is establi shed. Based on this definition, we show that our model has a unique global positive solution. Then we establish the sufficient conditions for extinction, nonpersistence in th e mean, weak persistence and stochastic permanence of the solution. The threshold betwe en weak persistence and extinction is obtained. In addition, the effects of impulsi ve perturbation and delay on persistence and extinction are discussed, respectively. F inally, numerical simulations are introduced to support the theoretical analysis results .
期刊介绍:
Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.