“幂零李群的Beurling定理”一文的勘误,大阪J.数学,48(2011),127—147

Pub Date : 2016-01-01 DOI:10.18910/58911
K. Smaoui
{"title":"“幂零李群的Beurling定理”一文的勘误,大阪J.数学,48(2011),127—147","authors":"K. Smaoui","doi":"10.18910/58911","DOIUrl":null,"url":null,"abstract":"Here W is a suitable cross-section for the generic coadjoint orbit s in g , the vector space dual ofg. The condition (1.1) of this theorem depends on the choice of t he bases for which the norm of x in G is defined. We must define the norm of x in G before stating Theorem 1.3. For this we must fix a bases of g, and then define the norm of x using this bases. In addition, we shouldn’t modify this bases t hroughout the proof of Theorem 1.3. This implies that, Remark 2.5.1 in the paper is n ot correct.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Erratum to the article ``Beurling's theorem for nilpotent Lie groups'' Osaka J. Math. 48 (2011), 127--147\",\"authors\":\"K. Smaoui\",\"doi\":\"10.18910/58911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here W is a suitable cross-section for the generic coadjoint orbit s in g , the vector space dual ofg. The condition (1.1) of this theorem depends on the choice of t he bases for which the norm of x in G is defined. We must define the norm of x in G before stating Theorem 1.3. For this we must fix a bases of g, and then define the norm of x using this bases. In addition, we shouldn’t modify this bases t hroughout the proof of Theorem 1.3. This implies that, Remark 2.5.1 in the paper is n ot correct.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/58911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/58911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这里W是g中一般伴随轨道s的合适截面,g的向量空间对偶。这个定理的条件(1.1)取决于G中x的范数所定义的基的选择。在陈述定理1.3之前,我们必须先定义G中x的范数。为此我们必须确定g的基底,然后用这个基底定义x的模。此外,在定理1.3的证明过程中,我们不应该修改这个基t。这意味着,论文中2.5.1的注释是不正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Erratum to the article ``Beurling's theorem for nilpotent Lie groups'' Osaka J. Math. 48 (2011), 127--147
Here W is a suitable cross-section for the generic coadjoint orbit s in g , the vector space dual ofg. The condition (1.1) of this theorem depends on the choice of t he bases for which the norm of x in G is defined. We must define the norm of x in G before stating Theorem 1.3. For this we must fix a bases of g, and then define the norm of x using this bases. In addition, we shouldn’t modify this bases t hroughout the proof of Theorem 1.3. This implies that, Remark 2.5.1 in the paper is n ot correct.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信