$\ mathm {SL}(2, \mathbb{C})$的e -多项式- $3$属的复曲线的字符变体

Pub Date : 2016-07-01 DOI:10.18910/58905
Javier Martínez, V. Muñoz
{"title":"$\\ mathm {SL}(2, \\mathbb{C})$的e -多项式- $3$属的复曲线的字符变体","authors":"Javier Martínez, V. Muñoz","doi":"10.18910/58905","DOIUrl":null,"url":null,"abstract":"We compute the E-polynomials of the moduli spaces of representations of the fundamental group of a complex curve of genus g = 3 into SL(2, C), and also of the moduli space of twisted representations. The case of genus g = 1, 2 has already been done in [12]. We follow the geometric technique introduced in [12], based on stratifying the space of representations, and on the analysis of the behaviour of the E-polynomial under fibrations.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"E-polynomials of $\\\\mathrm{SL}(2, \\\\mathbb{C})$-character varieties of complex curves of genus $3$\",\"authors\":\"Javier Martínez, V. Muñoz\",\"doi\":\"10.18910/58905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the E-polynomials of the moduli spaces of representations of the fundamental group of a complex curve of genus g = 3 into SL(2, C), and also of the moduli space of twisted representations. The case of genus g = 1, 2 has already been done in [12]. We follow the geometric technique introduced in [12], based on stratifying the space of representations, and on the analysis of the behaviour of the E-polynomial under fibrations.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/58905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/58905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们计算了g = 3属的复曲线的基本群到SL(2, C)的表示的模空间的e多项式,以及扭曲表示的模空间的e多项式。g = 1,2的情况已经在[12]中做过了。我们遵循[12]中介绍的几何技术,基于对表示空间的分层,以及对颤振下e多项式行为的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
E-polynomials of $\mathrm{SL}(2, \mathbb{C})$-character varieties of complex curves of genus $3$
We compute the E-polynomials of the moduli spaces of representations of the fundamental group of a complex curve of genus g = 3 into SL(2, C), and also of the moduli space of twisted representations. The case of genus g = 1, 2 has already been done in [12]. We follow the geometric technique introduced in [12], based on stratifying the space of representations, and on the analysis of the behaviour of the E-polynomial under fibrations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信