{"title":"五维球面上的伪厄米二极小勒让德曲面","authors":"Jong Taek Cho, Ji-Eun Lee","doi":"10.18910/57689","DOIUrl":null,"url":null,"abstract":"In this paper, we determine nonminimal pseudohermitian biminimal Legendre surfaces in the unit 5-sphere S 5 . In fact, the product of a circle and a helix of order 4 is realized as a nonminimal pseudohermitian biminimal Legendre immersion into S 5 . In addition, we obtain that there exist no nonminimal pseudohermitian biminimal Legendre surfaces in a 5-dimensional Sasakian space form of non-positive constant holomorphic sectional curvature for the Tanaka–Webster connection.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"52 1","pages":"1063-1077"},"PeriodicalIF":0.5000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PSEUDOHERMITIAN BIMINIMAL LEGENDRE SURFACES IN THE 5-DIMENSIONAL SPHERE\",\"authors\":\"Jong Taek Cho, Ji-Eun Lee\",\"doi\":\"10.18910/57689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we determine nonminimal pseudohermitian biminimal Legendre surfaces in the unit 5-sphere S 5 . In fact, the product of a circle and a helix of order 4 is realized as a nonminimal pseudohermitian biminimal Legendre immersion into S 5 . In addition, we obtain that there exist no nonminimal pseudohermitian biminimal Legendre surfaces in a 5-dimensional Sasakian space form of non-positive constant holomorphic sectional curvature for the Tanaka–Webster connection.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"52 1\",\"pages\":\"1063-1077\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/57689\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57689","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
PSEUDOHERMITIAN BIMINIMAL LEGENDRE SURFACES IN THE 5-DIMENSIONAL SPHERE
In this paper, we determine nonminimal pseudohermitian biminimal Legendre surfaces in the unit 5-sphere S 5 . In fact, the product of a circle and a helix of order 4 is realized as a nonminimal pseudohermitian biminimal Legendre immersion into S 5 . In addition, we obtain that there exist no nonminimal pseudohermitian biminimal Legendre surfaces in a 5-dimensional Sasakian space form of non-positive constant holomorphic sectional curvature for the Tanaka–Webster connection.
期刊介绍:
Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.