五维球面上的伪厄米二极小勒让德曲面

IF 0.5 4区 数学 Q3 MATHEMATICS
Jong Taek Cho, Ji-Eun Lee
{"title":"五维球面上的伪厄米二极小勒让德曲面","authors":"Jong Taek Cho, Ji-Eun Lee","doi":"10.18910/57689","DOIUrl":null,"url":null,"abstract":"In this paper, we determine nonminimal pseudohermitian biminimal Legendre surfaces in the unit 5-sphere S 5 . In fact, the product of a circle and a helix of order 4 is realized as a nonminimal pseudohermitian biminimal Legendre immersion into S 5 . In addition, we obtain that there exist no nonminimal pseudohermitian biminimal Legendre surfaces in a 5-dimensional Sasakian space form of non-positive constant holomorphic sectional curvature for the Tanaka–Webster connection.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"52 1","pages":"1063-1077"},"PeriodicalIF":0.5000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PSEUDOHERMITIAN BIMINIMAL LEGENDRE SURFACES IN THE 5-DIMENSIONAL SPHERE\",\"authors\":\"Jong Taek Cho, Ji-Eun Lee\",\"doi\":\"10.18910/57689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we determine nonminimal pseudohermitian biminimal Legendre surfaces in the unit 5-sphere S 5 . In fact, the product of a circle and a helix of order 4 is realized as a nonminimal pseudohermitian biminimal Legendre immersion into S 5 . In addition, we obtain that there exist no nonminimal pseudohermitian biminimal Legendre surfaces in a 5-dimensional Sasakian space form of non-positive constant holomorphic sectional curvature for the Tanaka–Webster connection.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"52 1\",\"pages\":\"1063-1077\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/57689\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57689","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文确定了单位5球s5上的非极小伪厄米二极小勒让德曲面。事实上,一个圆和一个4阶螺旋的乘积被实现为一个非极小伪厄米特二极小勒让德浸入S 5。此外,我们还得到了对于Tanaka-Webster连接的非正全纯截面曲率的5维Sasakian空间形式中不存在非极小伪埃米特二极小Legendre曲面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PSEUDOHERMITIAN BIMINIMAL LEGENDRE SURFACES IN THE 5-DIMENSIONAL SPHERE
In this paper, we determine nonminimal pseudohermitian biminimal Legendre surfaces in the unit 5-sphere S 5 . In fact, the product of a circle and a helix of order 4 is realized as a nonminimal pseudohermitian biminimal Legendre immersion into S 5 . In addition, we obtain that there exist no nonminimal pseudohermitian biminimal Legendre surfaces in a 5-dimensional Sasakian space form of non-positive constant holomorphic sectional curvature for the Tanaka–Webster connection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信