BMO鞅的尖锐极大估计

Pub Date : 2015-10-01 DOI:10.18910/57684
A. Osȩkowski
{"title":"BMO鞅的尖锐极大估计","authors":"A. Osȩkowski","doi":"10.18910/57684","DOIUrl":null,"url":null,"abstract":"We introduce a method which can be used to study maximal inequalities for martingales of bounded mean oscillation. As an application, we establish sharp Φ-inequalities and tail inequalities for the one-sided maximal function of a BMO martingale. The results can be regarded as BMO counterparts of the classical maximal estimates of Doob.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Sharp maximal estimates for BMO martingales\",\"authors\":\"A. Osȩkowski\",\"doi\":\"10.18910/57684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a method which can be used to study maximal inequalities for martingales of bounded mean oscillation. As an application, we establish sharp Φ-inequalities and tail inequalities for the one-sided maximal function of a BMO martingale. The results can be regarded as BMO counterparts of the classical maximal estimates of Doob.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/57684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

介绍了一种研究有界平均振荡鞅的极大不等式的方法。作为应用,我们建立了BMO鞅的单侧极大函数的尖锐Φ-inequalities不等式和尾部不等式。结果可以看作是经典的Doob最大估计的BMO对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Sharp maximal estimates for BMO martingales
We introduce a method which can be used to study maximal inequalities for martingales of bounded mean oscillation. As an application, we establish sharp Φ-inequalities and tail inequalities for the one-sided maximal function of a BMO martingale. The results can be regarded as BMO counterparts of the classical maximal estimates of Doob.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信