幂类似于次正规算子的算子

IF 0.5 4区 数学 Q3 MATHEMATICS
Sungeun Jung, E. Ko, Mee-Jung Lee
{"title":"幂类似于次正规算子的算子","authors":"Sungeun Jung, E. Ko, Mee-Jung Lee","doi":"10.18910/57659","DOIUrl":null,"url":null,"abstract":"In this paper, we study power similarity of operators. In particular, we show that if $T \\in \\mathit{PS}(H)$ (defined below) for some hyponormal operator $H$, then $T$ is subscalar. From this result, we obtain that such an operator with rich spectrum has a nontrivial invariant subspace. Moreover, we consider invariant and hyperinvariant subspaces for $T \\in \\mathit{PS}(H)$.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"1 1","pages":"833-847"},"PeriodicalIF":0.5000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON OPERATORS WHICH ARE POWER SIMILAR TO HYPONORMAL OPERATORS\",\"authors\":\"Sungeun Jung, E. Ko, Mee-Jung Lee\",\"doi\":\"10.18910/57659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study power similarity of operators. In particular, we show that if $T \\\\in \\\\mathit{PS}(H)$ (defined below) for some hyponormal operator $H$, then $T$ is subscalar. From this result, we obtain that such an operator with rich spectrum has a nontrivial invariant subspace. Moreover, we consider invariant and hyperinvariant subspaces for $T \\\\in \\\\mathit{PS}(H)$.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"1 1\",\"pages\":\"833-847\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/57659\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57659","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了算子的幂相似度。特别地,我们证明了如果$T \ In \mathit{PS}(H)$(定义见下)对于一些次正规算子$H$,则$T$是子标量。由此得到了这样一个富谱算子具有非平凡不变子空间。此外,我们考虑$T \in \mathit{PS}(H)$的不变子空间和超不变子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON OPERATORS WHICH ARE POWER SIMILAR TO HYPONORMAL OPERATORS
In this paper, we study power similarity of operators. In particular, we show that if $T \in \mathit{PS}(H)$ (defined below) for some hyponormal operator $H$, then $T$ is subscalar. From this result, we obtain that such an operator with rich spectrum has a nontrivial invariant subspace. Moreover, we consider invariant and hyperinvariant subspaces for $T \in \mathit{PS}(H)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信