{"title":"幂类似于次正规算子的算子","authors":"Sungeun Jung, E. Ko, Mee-Jung Lee","doi":"10.18910/57659","DOIUrl":null,"url":null,"abstract":"In this paper, we study power similarity of operators. In particular, we show that if $T \\in \\mathit{PS}(H)$ (defined below) for some hyponormal operator $H$, then $T$ is subscalar. From this result, we obtain that such an operator with rich spectrum has a nontrivial invariant subspace. Moreover, we consider invariant and hyperinvariant subspaces for $T \\in \\mathit{PS}(H)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON OPERATORS WHICH ARE POWER SIMILAR TO HYPONORMAL OPERATORS\",\"authors\":\"Sungeun Jung, E. Ko, Mee-Jung Lee\",\"doi\":\"10.18910/57659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study power similarity of operators. In particular, we show that if $T \\\\in \\\\mathit{PS}(H)$ (defined below) for some hyponormal operator $H$, then $T$ is subscalar. From this result, we obtain that such an operator with rich spectrum has a nontrivial invariant subspace. Moreover, we consider invariant and hyperinvariant subspaces for $T \\\\in \\\\mathit{PS}(H)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/57659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本文研究了算子的幂相似度。特别地,我们证明了如果$T \ In \mathit{PS}(H)$(定义见下)对于一些次正规算子$H$,则$T$是子标量。由此得到了这样一个富谱算子具有非平凡不变子空间。此外,我们考虑$T \in \mathit{PS}(H)$的不变子空间和超不变子空间。
ON OPERATORS WHICH ARE POWER SIMILAR TO HYPONORMAL OPERATORS
In this paper, we study power similarity of operators. In particular, we show that if $T \in \mathit{PS}(H)$ (defined below) for some hyponormal operator $H$, then $T$ is subscalar. From this result, we obtain that such an operator with rich spectrum has a nontrivial invariant subspace. Moreover, we consider invariant and hyperinvariant subspaces for $T \in \mathit{PS}(H)$.