幂类似于次正规算子的算子

Pub Date : 2015-07-01 DOI:10.18910/57659
Sungeun Jung, E. Ko, Mee-Jung Lee
{"title":"幂类似于次正规算子的算子","authors":"Sungeun Jung, E. Ko, Mee-Jung Lee","doi":"10.18910/57659","DOIUrl":null,"url":null,"abstract":"In this paper, we study power similarity of operators. In particular, we show that if $T \\in \\mathit{PS}(H)$ (defined below) for some hyponormal operator $H$, then $T$ is subscalar. From this result, we obtain that such an operator with rich spectrum has a nontrivial invariant subspace. Moreover, we consider invariant and hyperinvariant subspaces for $T \\in \\mathit{PS}(H)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ON OPERATORS WHICH ARE POWER SIMILAR TO HYPONORMAL OPERATORS\",\"authors\":\"Sungeun Jung, E. Ko, Mee-Jung Lee\",\"doi\":\"10.18910/57659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study power similarity of operators. In particular, we show that if $T \\\\in \\\\mathit{PS}(H)$ (defined below) for some hyponormal operator $H$, then $T$ is subscalar. From this result, we obtain that such an operator with rich spectrum has a nontrivial invariant subspace. Moreover, we consider invariant and hyperinvariant subspaces for $T \\\\in \\\\mathit{PS}(H)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/57659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了算子的幂相似度。特别地,我们证明了如果$T \ In \mathit{PS}(H)$(定义见下)对于一些次正规算子$H$,则$T$是子标量。由此得到了这样一个富谱算子具有非平凡不变子空间。此外,我们考虑$T \in \mathit{PS}(H)$的不变子空间和超不变子空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ON OPERATORS WHICH ARE POWER SIMILAR TO HYPONORMAL OPERATORS
In this paper, we study power similarity of operators. In particular, we show that if $T \in \mathit{PS}(H)$ (defined below) for some hyponormal operator $H$, then $T$ is subscalar. From this result, we obtain that such an operator with rich spectrum has a nontrivial invariant subspace. Moreover, we consider invariant and hyperinvariant subspaces for $T \in \mathit{PS}(H)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信