reinhardt域上szegÖ核的Forelli-rudin构造及渐近展开

Pub Date : 2015-10-01 DOI:10.18910/57651
M. Engliš, Hao Xu
{"title":"reinhardt域上szegÖ核的Forelli-rudin构造及渐近展开","authors":"M. Engliš, Hao Xu","doi":"10.18910/57651","DOIUrl":null,"url":null,"abstract":"We apply Forelli-Rudin construction and Nakazawa’s hodograph transformation to prove a graph theoretic closed formula for invariant theoretic coefficients in the asymptotic expansion of the Szego kernel on strictly pseudoconvex complete Reinhardt domains. The formula provides a structural analogy between the asymptotic expansion of the Bergman and Szego kernels. It can be used to effectively compute the first terms of Fefferman’s asymptotic expansion in CR invariants. Our method also works for the asymptotic expansion of the Sobolev-Bergman kernel introduced by Hirachi and Komatsu.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FORELLI–RUDIN CONSTRUCTION AND ASYMPTOTIC EXPANSION OF SZEGÖ KERNEL ON REINHARDT DOMAINS\",\"authors\":\"M. Engliš, Hao Xu\",\"doi\":\"10.18910/57651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply Forelli-Rudin construction and Nakazawa’s hodograph transformation to prove a graph theoretic closed formula for invariant theoretic coefficients in the asymptotic expansion of the Szego kernel on strictly pseudoconvex complete Reinhardt domains. The formula provides a structural analogy between the asymptotic expansion of the Bergman and Szego kernels. It can be used to effectively compute the first terms of Fefferman’s asymptotic expansion in CR invariants. Our method also works for the asymptotic expansion of the Sobolev-Bergman kernel introduced by Hirachi and Komatsu.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/57651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

应用Forelli-Rudin构造和Nakazawa的hodograph变换,证明了严格伪凸完全Reinhardt域上szgo核渐近展开中不变理论系数的图论封闭公式。该公式提供了Bergman核和Szego核的渐近展开之间的结构类比。它可以有效地计算CR不变量中Fefferman渐近展开式的第一项。我们的方法也适用于Hirachi和Komatsu引入的Sobolev-Bergman核的渐近展开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
FORELLI–RUDIN CONSTRUCTION AND ASYMPTOTIC EXPANSION OF SZEGÖ KERNEL ON REINHARDT DOMAINS
We apply Forelli-Rudin construction and Nakazawa’s hodograph transformation to prove a graph theoretic closed formula for invariant theoretic coefficients in the asymptotic expansion of the Szego kernel on strictly pseudoconvex complete Reinhardt domains. The formula provides a structural analogy between the asymptotic expansion of the Bergman and Szego kernels. It can be used to effectively compute the first terms of Fefferman’s asymptotic expansion in CR invariants. Our method also works for the asymptotic expansion of the Sobolev-Bergman kernel introduced by Hirachi and Komatsu.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信