黎曼流形中弹性线的运动与奇异摄动

Pub Date : 2015-04-01 DOI:10.18910/57640
N. Koiso
{"title":"黎曼流形中弹性线的运动与奇异摄动","authors":"N. Koiso","doi":"10.18910/57640","DOIUrl":null,"url":null,"abstract":"R.E. Caflish and J.H. Maddocks analyzed the dynamics of a plana r slender elastic rod. We consider a thin elastic rod in an N-dimensional riemannian manifold. The former model represents an elastic rod with positive thi ckness, and the equation becomes a semilinear wave equation. Our model represents an infinitely thin elastic rod, and the equation becomes a 1-dimensional semilinear pl ate equation. We prove the short time existence of solutions. We also discuss the be aviour of the solution when the resistance goes to infinity, and find that the solutio n converges to a solution of a gradient flow equation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"ON MOTION OF AN ELASTIC WIRE IN A RIEMANNIAN MANIFOLD AND SINGULAR PERTURBATION\",\"authors\":\"N. Koiso\",\"doi\":\"10.18910/57640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"R.E. Caflish and J.H. Maddocks analyzed the dynamics of a plana r slender elastic rod. We consider a thin elastic rod in an N-dimensional riemannian manifold. The former model represents an elastic rod with positive thi ckness, and the equation becomes a semilinear wave equation. Our model represents an infinitely thin elastic rod, and the equation becomes a 1-dimensional semilinear pl ate equation. We prove the short time existence of solutions. We also discuss the be aviour of the solution when the resistance goes to infinity, and find that the solutio n converges to a solution of a gradient flow equation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/57640\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

R.E. Caflish和J.H. Maddocks分析了平面细长弹性杆的动力学。我们考虑一根n维黎曼流形中的细弹性杆。前一种模型表示一根具有正密度的弹性杆,方程变成半线性波动方程。我们的模型表示一根无限细的弹性杆,方程变成一维半线性方程。证明了解的短时间存在性。我们还讨论了阻力趋于无穷时的解的性质,并发现解收敛于梯度流动方程的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
ON MOTION OF AN ELASTIC WIRE IN A RIEMANNIAN MANIFOLD AND SINGULAR PERTURBATION
R.E. Caflish and J.H. Maddocks analyzed the dynamics of a plana r slender elastic rod. We consider a thin elastic rod in an N-dimensional riemannian manifold. The former model represents an elastic rod with positive thi ckness, and the equation becomes a semilinear wave equation. Our model represents an infinitely thin elastic rod, and the equation becomes a 1-dimensional semilinear pl ate equation. We prove the short time existence of solutions. We also discuss the be aviour of the solution when the resistance goes to infinity, and find that the solutio n converges to a solution of a gradient flow equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信