{"title":"戈伦斯坦扁平预封套","authors":"A. Iacob","doi":"10.18910/57638","DOIUrl":null,"url":null,"abstract":"We consider a two sided noetherian ring R such that the character modules of Gorenstein injective leftR-modules are Gorenstein flat right R-modules. We then prove that the class of Gorenstein flat right R-modules is preenveloping. We also show that the class of Gorenstein flat complexes of right R-modules is preenevloping in Ch(R). In the second part of the paper we give examples of rings with t he property that the character modules of Gorenstein injective modules are G or nstein flat. We prove that any two sided noetherian ring R with i.d.Rop R < 1 has the desired property. We also prove that ifR is a two sided noetherian ring with a dualizing bimodule RVR and such thatR is left n-perfect for some positive integer n, then the character modules of Gorenstein injective modules are Gorenstein flat .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Gorenstein Flat Preenvelopes\",\"authors\":\"A. Iacob\",\"doi\":\"10.18910/57638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a two sided noetherian ring R such that the character modules of Gorenstein injective leftR-modules are Gorenstein flat right R-modules. We then prove that the class of Gorenstein flat right R-modules is preenveloping. We also show that the class of Gorenstein flat complexes of right R-modules is preenevloping in Ch(R). In the second part of the paper we give examples of rings with t he property that the character modules of Gorenstein injective modules are G or nstein flat. We prove that any two sided noetherian ring R with i.d.Rop R < 1 has the desired property. We also prove that ifR is a two sided noetherian ring with a dualizing bimodule RVR and such thatR is left n-perfect for some positive integer n, then the character modules of Gorenstein injective modules are Gorenstein flat .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/57638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider a two sided noetherian ring R such that the character modules of Gorenstein injective leftR-modules are Gorenstein flat right R-modules. We then prove that the class of Gorenstein flat right R-modules is preenveloping. We also show that the class of Gorenstein flat complexes of right R-modules is preenevloping in Ch(R). In the second part of the paper we give examples of rings with t he property that the character modules of Gorenstein injective modules are G or nstein flat. We prove that any two sided noetherian ring R with i.d.Rop R < 1 has the desired property. We also prove that ifR is a two sided noetherian ring with a dualizing bimodule RVR and such thatR is left n-perfect for some positive integer n, then the character modules of Gorenstein injective modules are Gorenstein flat .