关于数字域上双曲曲线的前1外伽罗瓦表示法的核

IF 0.5 4区 数学 Q3 MATHEMATICS
Yuichiro Hoshi
{"title":"关于数字域上双曲曲线的前1外伽罗瓦表示法的核","authors":"Yuichiro Hoshi","doi":"10.18910/57635","DOIUrl":null,"url":null,"abstract":"In the present paper, we discuss the relationship between the Galois extension corresponding to the kernel of the pro-l outer Galois representation associated to a hyperbolic curve over a number eld and l-moderate points of the hyperbolic curve. In particular, we prove that, for a certain hyperbolic curve, the Galois extension under consideration is generated by the coordinates of the l-moderate points of the hyperbolic curve. This may be regarded as an analogue of the fact that the Galois extension corresponding to the kernel of the l-adic Galois representation associated to an abelian variety is generated by the coordinates of the torsion points of the abelian variety of l-power order. Moreover, we discuss an application of the argument of the present paper to the study of the Fermat equation.","PeriodicalId":54660,"journal":{"name":"Osaka Journal of Mathematics","volume":"52 1","pages":"647-675"},"PeriodicalIF":0.5000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On the kernels of the pro-l outer Galois representations associated to hyperbolic curves over number fields\",\"authors\":\"Yuichiro Hoshi\",\"doi\":\"10.18910/57635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we discuss the relationship between the Galois extension corresponding to the kernel of the pro-l outer Galois representation associated to a hyperbolic curve over a number eld and l-moderate points of the hyperbolic curve. In particular, we prove that, for a certain hyperbolic curve, the Galois extension under consideration is generated by the coordinates of the l-moderate points of the hyperbolic curve. This may be regarded as an analogue of the fact that the Galois extension corresponding to the kernel of the l-adic Galois representation associated to an abelian variety is generated by the coordinates of the torsion points of the abelian variety of l-power order. Moreover, we discuss an application of the argument of the present paper to the study of the Fermat equation.\",\"PeriodicalId\":54660,\"journal\":{\"name\":\"Osaka Journal of Mathematics\",\"volume\":\"52 1\",\"pages\":\"647-675\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Osaka Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.18910/57635\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Osaka Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.18910/57635","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

本文讨论了双曲曲线在数域上的前- 1外伽罗瓦表示的核所对应的伽罗瓦扩展与双曲曲线的l-中点之间的关系。特别地,我们证明了对于某双曲曲线,所考虑的伽罗瓦扩展是由双曲曲线的l-适中点的坐标产生的。这可以看作是一个类似的事实,即对应于与阿贝尔变体相关的l进伽罗瓦表示的核的伽罗瓦扩展是由l-幂阶阿贝尔变体的扭转点的坐标生成的。此外,我们还讨论了本文的论点在费马方程研究中的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the kernels of the pro-l outer Galois representations associated to hyperbolic curves over number fields
In the present paper, we discuss the relationship between the Galois extension corresponding to the kernel of the pro-l outer Galois representation associated to a hyperbolic curve over a number eld and l-moderate points of the hyperbolic curve. In particular, we prove that, for a certain hyperbolic curve, the Galois extension under consideration is generated by the coordinates of the l-moderate points of the hyperbolic curve. This may be regarded as an analogue of the fact that the Galois extension corresponding to the kernel of the l-adic Galois representation associated to an abelian variety is generated by the coordinates of the torsion points of the abelian variety of l-power order. Moreover, we discuss an application of the argument of the present paper to the study of the Fermat equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Osaka Journal of Mathematics is published quarterly by the joint editorship of the Department of Mathematics, Graduate School of Science, Osaka University, and the Department of Mathematics, Faculty of Science, Osaka City University and the Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University with the cooperation of the Department of Mathematical Sciences, Faculty of Engineering Science, Osaka University. The Journal is devoted entirely to the publication of original works in pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信