{"title":"周期通信的频域扩散偏置补偿自适应","authors":"Yishu Peng;Sheng Zhang;Hongyang Chen;Zhengchun Zhou;Xiaohu Tang","doi":"10.1109/TSIPN.2023.3313810","DOIUrl":null,"url":null,"abstract":"When the input signal of each node is interfered by noise, the distributed frequency-domain adaptive algorithm yields biased estimation. To eliminate the noise-induced bias with reduced communication load, this article proposes the frequency-domain diffusion bias-compensated adaptive filtering with periodic communication. By minimizing the bias-eliminating cost function, the frequency-domain diffusion bias-compensated LMS (FD-BCLMS) is first derived. Subsequently, to achieve lower computational complexity and communication cost, we design the double periodic FD-BCLMS (DPFD-BCLMS) algorithm by resorting to periodic update and communication strategies. Moreover, the DPFD-BCLMS with power normalized scheme (DPFD-BCNLMS) is developed to improve the convergence rate in the case of colored input. The transient and steady-state behaviors are investigated. For the steady-state performance degradation in the DPFD-BCNLMS, we modify the combination step near steady-state, resulting in the switched DPFD-BCNLMS (SDPFD-BCNLMS). A new estimation method for the input noise variance is also provided. Finally, the superiority of the proposed algorithms is validated by numerical simulations.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"9 ","pages":"626-639"},"PeriodicalIF":3.0000,"publicationDate":"2023-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency-Domain Diffusion Bias-Compensated Adaptation With Periodic Communication\",\"authors\":\"Yishu Peng;Sheng Zhang;Hongyang Chen;Zhengchun Zhou;Xiaohu Tang\",\"doi\":\"10.1109/TSIPN.2023.3313810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When the input signal of each node is interfered by noise, the distributed frequency-domain adaptive algorithm yields biased estimation. To eliminate the noise-induced bias with reduced communication load, this article proposes the frequency-domain diffusion bias-compensated adaptive filtering with periodic communication. By minimizing the bias-eliminating cost function, the frequency-domain diffusion bias-compensated LMS (FD-BCLMS) is first derived. Subsequently, to achieve lower computational complexity and communication cost, we design the double periodic FD-BCLMS (DPFD-BCLMS) algorithm by resorting to periodic update and communication strategies. Moreover, the DPFD-BCLMS with power normalized scheme (DPFD-BCNLMS) is developed to improve the convergence rate in the case of colored input. The transient and steady-state behaviors are investigated. For the steady-state performance degradation in the DPFD-BCNLMS, we modify the combination step near steady-state, resulting in the switched DPFD-BCNLMS (SDPFD-BCNLMS). A new estimation method for the input noise variance is also provided. Finally, the superiority of the proposed algorithms is validated by numerical simulations.\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"9 \",\"pages\":\"626-639\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10247652/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10247652/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Frequency-Domain Diffusion Bias-Compensated Adaptation With Periodic Communication
When the input signal of each node is interfered by noise, the distributed frequency-domain adaptive algorithm yields biased estimation. To eliminate the noise-induced bias with reduced communication load, this article proposes the frequency-domain diffusion bias-compensated adaptive filtering with periodic communication. By minimizing the bias-eliminating cost function, the frequency-domain diffusion bias-compensated LMS (FD-BCLMS) is first derived. Subsequently, to achieve lower computational complexity and communication cost, we design the double periodic FD-BCLMS (DPFD-BCLMS) algorithm by resorting to periodic update and communication strategies. Moreover, the DPFD-BCLMS with power normalized scheme (DPFD-BCNLMS) is developed to improve the convergence rate in the case of colored input. The transient and steady-state behaviors are investigated. For the steady-state performance degradation in the DPFD-BCNLMS, we modify the combination step near steady-state, resulting in the switched DPFD-BCNLMS (SDPFD-BCNLMS). A new estimation method for the input noise variance is also provided. Finally, the superiority of the proposed algorithms is validated by numerical simulations.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.