用有机忆阻器演示神经激励电路的多尺度仿真方法

Christopher H. Bennett;Jean-Etienne Lorival;Francois Marc;Théo Cabaret;Bruno Jousselme;Vincent Derycke;Jacques-Olivier Klein;Cristell Maneux
{"title":"用有机忆阻器演示神经激励电路的多尺度仿真方法","authors":"Christopher H. Bennett;Jean-Etienne Lorival;Francois Marc;Théo Cabaret;Bruno Jousselme;Vincent Derycke;Jacques-Olivier Klein;Cristell Maneux","doi":"10.1109/TMSCS.2017.2773523","DOIUrl":null,"url":null,"abstract":"Organic memristors are promising molecular electronic devices for neuro-inspired on-chip learning applications. In this paper, we present a numerically efficient compact model suitable for \n<inline-formula><tex-math>$Fe(bpy)_3^{2+}$</tex-math></inline-formula>\n organic memristors operating according to an intramolecular charge transfer switching mechanism. This compact model, being physics-based and relying on electrical characterizations and parametric extractions performed on test structures, is especially efficient in pulsed mode and describes the conductance variations for both SET and RESET regimes. Using this model, a dynamic multiscale simulation approach has been set-up to extend the model from individual devices to larger model systems that learn progressively through time. To verify the soundness and highlight emergent properties of the organic memristors, instances of the compact model have been simulated within a simple neuromorphic design that co-integrates with CMOS neurons. In addition, a larger supervised learning system using the new compact model is demonstrated. These successful tests suggest our model might be of interest to neuromorphic designers.","PeriodicalId":100643,"journal":{"name":"IEEE Transactions on Multi-Scale Computing Systems","volume":"4 4","pages":"822-832"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMSCS.2017.2773523","citationCount":"5","resultStr":"{\"title\":\"Multiscaled Simulation Methodology for Neuro-Inspired Circuits Demonstrated with an Organic Memristor\",\"authors\":\"Christopher H. Bennett;Jean-Etienne Lorival;Francois Marc;Théo Cabaret;Bruno Jousselme;Vincent Derycke;Jacques-Olivier Klein;Cristell Maneux\",\"doi\":\"10.1109/TMSCS.2017.2773523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic memristors are promising molecular electronic devices for neuro-inspired on-chip learning applications. In this paper, we present a numerically efficient compact model suitable for \\n<inline-formula><tex-math>$Fe(bpy)_3^{2+}$</tex-math></inline-formula>\\n organic memristors operating according to an intramolecular charge transfer switching mechanism. This compact model, being physics-based and relying on electrical characterizations and parametric extractions performed on test structures, is especially efficient in pulsed mode and describes the conductance variations for both SET and RESET regimes. Using this model, a dynamic multiscale simulation approach has been set-up to extend the model from individual devices to larger model systems that learn progressively through time. To verify the soundness and highlight emergent properties of the organic memristors, instances of the compact model have been simulated within a simple neuromorphic design that co-integrates with CMOS neurons. In addition, a larger supervised learning system using the new compact model is demonstrated. These successful tests suggest our model might be of interest to neuromorphic designers.\",\"PeriodicalId\":100643,\"journal\":{\"name\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"volume\":\"4 4\",\"pages\":\"822-832\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TMSCS.2017.2773523\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8107565/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multi-Scale Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8107565/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

有机忆阻器是一种很有前途的分子电子设备,用于神经启发的芯片上学习应用。在本文中,我们提出了一个适用于$Fe(bpy)_3^{2+}$有机忆阻器的数值高效紧凑模型,该忆阻器根据分子内电荷转移开关机制运行。这种紧凑的模型基于物理,依赖于对测试结构进行的电学表征和参数提取,在脉冲模式下尤其有效,并描述了SET和RESET状态下的电导变化。使用该模型,建立了一种动态多尺度模拟方法,将模型从单个设备扩展到随时间逐渐学习的更大模型系统。为了验证有机忆阻器的可靠性并突出其涌现特性,在与CMOS神经元共同集成的简单神经形态设计中模拟了紧凑模型的实例。此外,还演示了一个使用新的紧凑模型的更大的监督学习系统。这些成功的测试表明,我们的模型可能会引起神经形态设计师的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscaled Simulation Methodology for Neuro-Inspired Circuits Demonstrated with an Organic Memristor
Organic memristors are promising molecular electronic devices for neuro-inspired on-chip learning applications. In this paper, we present a numerically efficient compact model suitable for $Fe(bpy)_3^{2+}$ organic memristors operating according to an intramolecular charge transfer switching mechanism. This compact model, being physics-based and relying on electrical characterizations and parametric extractions performed on test structures, is especially efficient in pulsed mode and describes the conductance variations for both SET and RESET regimes. Using this model, a dynamic multiscale simulation approach has been set-up to extend the model from individual devices to larger model systems that learn progressively through time. To verify the soundness and highlight emergent properties of the organic memristors, instances of the compact model have been simulated within a simple neuromorphic design that co-integrates with CMOS neurons. In addition, a larger supervised learning system using the new compact model is demonstrated. These successful tests suggest our model might be of interest to neuromorphic designers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信