DLoBD:HPC集群上基于大数据堆栈的深度学习综合研究

Xiaoyi Lu;Haiyang Shi;Rajarshi Biswas;M. Haseeb Javed;Dhabaleswar K. Panda
{"title":"DLoBD:HPC集群上基于大数据堆栈的深度学习综合研究","authors":"Xiaoyi Lu;Haiyang Shi;Rajarshi Biswas;M. Haseeb Javed;Dhabaleswar K. Panda","doi":"10.1109/TMSCS.2018.2845886","DOIUrl":null,"url":null,"abstract":"<underline>D</u>\neep \n<underline>L</u>\nearning \n<underline>o</u>\nver \n<underline>B</u>\nig \n<underline>D</u>\nata (DLoBD) is an emerging paradigm to mine value from the massive amount of gathered data. Many Deep Learning frameworks, like Caffe, TensorFlow, etc., start running over Big Data stacks, such as Apache Hadoop and Spark. Even though a lot of activities are happening in the field, there is a lack of comprehensive studies on analyzing the impact of RDMA-capable networks and CPUs/GPUs on DLoBD stacks. To fill this gap, we propose a systematical characterization methodology and conduct extensive performance evaluations on four representative DLoBD stacks (i.e., CaffeOnSpark, TensorFlowOnSpark, MMLSpark/CNTKOnSpark, and BigDL) to expose the interesting trends regarding performance, scalability, accuracy, and resource utilization. Our observations show that RDMA-based design for DLoBD stacks can achieve up to 2.7x speedup compared to the IPoIB-based scheme. The RDMA scheme also scales better and utilizes resources more efficiently than IPoIB. For most cases, GPU-based schemes can outperform CPU-based designs, but we see that for LeNet on MNIST, CPU + MKL can achieve better performance than GPU and GPU + cuDNN on 16 nodes. Through our evaluation and an in-depth analysis on TensorFlowOnSpark, we find that there are large rooms to improve the designs of current-generation DLoBD stacks.","PeriodicalId":100643,"journal":{"name":"IEEE Transactions on Multi-Scale Computing Systems","volume":"4 4","pages":"635-648"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMSCS.2018.2845886","citationCount":"15","resultStr":"{\"title\":\"DLoBD: A Comprehensive Study of Deep Learning over Big Data Stacks on HPC Clusters\",\"authors\":\"Xiaoyi Lu;Haiyang Shi;Rajarshi Biswas;M. Haseeb Javed;Dhabaleswar K. Panda\",\"doi\":\"10.1109/TMSCS.2018.2845886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<underline>D</u>\\neep \\n<underline>L</u>\\nearning \\n<underline>o</u>\\nver \\n<underline>B</u>\\nig \\n<underline>D</u>\\nata (DLoBD) is an emerging paradigm to mine value from the massive amount of gathered data. Many Deep Learning frameworks, like Caffe, TensorFlow, etc., start running over Big Data stacks, such as Apache Hadoop and Spark. Even though a lot of activities are happening in the field, there is a lack of comprehensive studies on analyzing the impact of RDMA-capable networks and CPUs/GPUs on DLoBD stacks. To fill this gap, we propose a systematical characterization methodology and conduct extensive performance evaluations on four representative DLoBD stacks (i.e., CaffeOnSpark, TensorFlowOnSpark, MMLSpark/CNTKOnSpark, and BigDL) to expose the interesting trends regarding performance, scalability, accuracy, and resource utilization. Our observations show that RDMA-based design for DLoBD stacks can achieve up to 2.7x speedup compared to the IPoIB-based scheme. The RDMA scheme also scales better and utilizes resources more efficiently than IPoIB. For most cases, GPU-based schemes can outperform CPU-based designs, but we see that for LeNet on MNIST, CPU + MKL can achieve better performance than GPU and GPU + cuDNN on 16 nodes. Through our evaluation and an in-depth analysis on TensorFlowOnSpark, we find that there are large rooms to improve the designs of current-generation DLoBD stacks.\",\"PeriodicalId\":100643,\"journal\":{\"name\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"volume\":\"4 4\",\"pages\":\"635-648\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TMSCS.2018.2845886\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8378049/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multi-Scale Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8378049/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

基于大数据的深度学习(DLoBD)是一种从大量收集的数据中挖掘价值的新兴范式。许多深度学习框架,如Caffe、TensorFlow等,开始在大数据堆栈上运行,如Apache Hadoop和Spark。尽管该领域正在开展大量活动,但缺乏全面的研究来分析支持RDMA的网络和CPU/GPU对DLoBD堆栈的影响。为了填补这一空白,我们提出了一种系统的表征方法,并对四个具有代表性的DLoBD堆栈(即CaffeOnPark、TensorFlowOnSpark、MMLSpark/CNTKOnSpark和BigDL)进行了广泛的性能评估,以揭示性能、可扩展性、准确性和资源利用率方面的有趣趋势。我们的观察结果表明,与基于IPoIB的方案相比,基于RDMA的DLoBD堆栈设计可以实现高达2.7倍的加速。RDMA方案还比IPoIB更好地扩展并且更有效地利用资源。在大多数情况下,基于GPU的方案可以优于基于CPU的设计,但我们看到,对于MNIST上的LeNet,CPU+MKL可以在16个节点上实现比GPU和GPU+cuDNN更好的性能。通过对TensorFlowOnSpark的评估和深入分析,我们发现当前一代DLoBD堆栈的设计还有很大的改进空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DLoBD: A Comprehensive Study of Deep Learning over Big Data Stacks on HPC Clusters
D eep L earning o ver B ig D ata (DLoBD) is an emerging paradigm to mine value from the massive amount of gathered data. Many Deep Learning frameworks, like Caffe, TensorFlow, etc., start running over Big Data stacks, such as Apache Hadoop and Spark. Even though a lot of activities are happening in the field, there is a lack of comprehensive studies on analyzing the impact of RDMA-capable networks and CPUs/GPUs on DLoBD stacks. To fill this gap, we propose a systematical characterization methodology and conduct extensive performance evaluations on four representative DLoBD stacks (i.e., CaffeOnSpark, TensorFlowOnSpark, MMLSpark/CNTKOnSpark, and BigDL) to expose the interesting trends regarding performance, scalability, accuracy, and resource utilization. Our observations show that RDMA-based design for DLoBD stacks can achieve up to 2.7x speedup compared to the IPoIB-based scheme. The RDMA scheme also scales better and utilizes resources more efficiently than IPoIB. For most cases, GPU-based schemes can outperform CPU-based designs, but we see that for LeNet on MNIST, CPU + MKL can achieve better performance than GPU and GPU + cuDNN on 16 nodes. Through our evaluation and an in-depth analysis on TensorFlowOnSpark, we find that there are large rooms to improve the designs of current-generation DLoBD stacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信