SpiNNaker:基于事件的模拟——定量行为

Andrew D. Brown;John E. Chad;Raihaan Kamarudin;Kier J. Dugan;Stephen B. Furber
{"title":"SpiNNaker:基于事件的模拟——定量行为","authors":"Andrew D. Brown;John E. Chad;Raihaan Kamarudin;Kier J. Dugan;Stephen B. Furber","doi":"10.1109/TMSCS.2017.2748122","DOIUrl":null,"url":null,"abstract":"SpiNNaker (Spiking Neural Network Architecture) is a specialized computing engine, intended for real-time simulation of neural systems. It consists of a mesh of 240x240 nodes, each containing 18 ARM9 processors: over a million cores, communicating via a bespoke network. Ultimately, the machine will support the simulation of up to a billion neurons in real time, allowing simulation experiments to be taken to hitherto unattainable scales. The architecture achieves this by ignoring three of the axioms of computer design: the communication fabric is non-deterministic; there is no global core synchronisation, and the system state-held in distributed memory-is not coherent. Time models itself: there is no notion of computed simulation time-wallclock time is simulation time. Whilst these design decisions are orthogonal to conventional wisdom, they bring the engine behavior closer to its intended simulation target-neural systems. We describe how SpiNNaker simulates large neural ensembles; we provide performance figures and outline some failure mechanisms. SpiNNaker simulation time scales 1:1 with wallclock time at least up to nine million synaptic connections on a 768 core subsystem (~1400th of the full system) to accurately produce logically predicted results.","PeriodicalId":100643,"journal":{"name":"IEEE Transactions on Multi-Scale Computing Systems","volume":"4 3","pages":"450-462"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TMSCS.2017.2748122","citationCount":"5","resultStr":"{\"title\":\"SpiNNaker: Event-Based Simulation—Quantitative Behavior\",\"authors\":\"Andrew D. Brown;John E. Chad;Raihaan Kamarudin;Kier J. Dugan;Stephen B. Furber\",\"doi\":\"10.1109/TMSCS.2017.2748122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SpiNNaker (Spiking Neural Network Architecture) is a specialized computing engine, intended for real-time simulation of neural systems. It consists of a mesh of 240x240 nodes, each containing 18 ARM9 processors: over a million cores, communicating via a bespoke network. Ultimately, the machine will support the simulation of up to a billion neurons in real time, allowing simulation experiments to be taken to hitherto unattainable scales. The architecture achieves this by ignoring three of the axioms of computer design: the communication fabric is non-deterministic; there is no global core synchronisation, and the system state-held in distributed memory-is not coherent. Time models itself: there is no notion of computed simulation time-wallclock time is simulation time. Whilst these design decisions are orthogonal to conventional wisdom, they bring the engine behavior closer to its intended simulation target-neural systems. We describe how SpiNNaker simulates large neural ensembles; we provide performance figures and outline some failure mechanisms. SpiNNaker simulation time scales 1:1 with wallclock time at least up to nine million synaptic connections on a 768 core subsystem (~1400th of the full system) to accurately produce logically predicted results.\",\"PeriodicalId\":100643,\"journal\":{\"name\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"volume\":\"4 3\",\"pages\":\"450-462\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TMSCS.2017.2748122\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Multi-Scale Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/8118143/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multi-Scale Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/8118143/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

SpiNNaker(Spiking Neural Network Architecture)是一个专门的计算引擎,旨在实时模拟神经系统。它由240x240个节点组成,每个节点包含18个ARM9处理器:超过一百万个核心,通过定制网络进行通信。最终,该机器将实时支持多达10亿个神经元的模拟,使模拟实验能够达到迄今为止无法达到的规模。该体系结构通过忽略计算机设计的三个公理来实现这一点:通信结构是不确定性的;不存在全局核心同步,并且保持在分布式存储器中的系统状态不一致。时间模型本身:没有计算模拟时间的概念。wallclock时间就是模拟时间。虽然这些设计决策与传统观点正交,但它们使发动机行为更接近其预期的模拟目标神经系统。我们描述了SpiNNaker如何模拟大型神经系统;我们提供了性能数据并概述了一些故障机制。SpiNNaker模拟时间比例为1:1,壁时钟时间在768核心子系统(约为整个系统的1400个)上至少高达900万个突触连接,以准确产生逻辑预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SpiNNaker: Event-Based Simulation—Quantitative Behavior
SpiNNaker (Spiking Neural Network Architecture) is a specialized computing engine, intended for real-time simulation of neural systems. It consists of a mesh of 240x240 nodes, each containing 18 ARM9 processors: over a million cores, communicating via a bespoke network. Ultimately, the machine will support the simulation of up to a billion neurons in real time, allowing simulation experiments to be taken to hitherto unattainable scales. The architecture achieves this by ignoring three of the axioms of computer design: the communication fabric is non-deterministic; there is no global core synchronisation, and the system state-held in distributed memory-is not coherent. Time models itself: there is no notion of computed simulation time-wallclock time is simulation time. Whilst these design decisions are orthogonal to conventional wisdom, they bring the engine behavior closer to its intended simulation target-neural systems. We describe how SpiNNaker simulates large neural ensembles; we provide performance figures and outline some failure mechanisms. SpiNNaker simulation time scales 1:1 with wallclock time at least up to nine million synaptic connections on a 768 core subsystem (~1400th of the full system) to accurately produce logically predicted results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信