带有Lévy噪声的混合中立型随机时滞微分方程的H∞和时滞反馈渐近稳定性

IF 1.6 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Mohamed Rhaima;Lassaad Mchiri;A Ben Makhlouf
{"title":"带有Lévy噪声的混合中立型随机时滞微分方程的H∞和时滞反馈渐近稳定性","authors":"Mohamed Rhaima;Lassaad Mchiri;A Ben Makhlouf","doi":"10.1093/imamci/dnad002","DOIUrl":null,"url":null,"abstract":"This work addresses existence and stabilization problem for a hybrid neutral stochastic delay differential equations with Lévy noise (HNSDDELN). The coefficients of such systems do not satisfy the conventional linear growth conditions, but are subject to high nonlinearity. We first prove the existence and uniqueness of the solution. We then design a delay feedback controller to make an unstable HNSDDELN \n<tex>$H_{\\infty }$</tex>\n and asymptotically stable in \n<tex>${\\mathbb{L}}^{p}$</tex>\n. We end up with a numerical example that corroborates our theoretical findings.","PeriodicalId":56128,"journal":{"name":"IMA Journal of Mathematical Control and Information","volume":"40 1","pages":"106-132"},"PeriodicalIF":1.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"H∞ and Asymptotic Stability via delay feedback for hybrid neutral stochastic delay differential equations with Lévy noise\",\"authors\":\"Mohamed Rhaima;Lassaad Mchiri;A Ben Makhlouf\",\"doi\":\"10.1093/imamci/dnad002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work addresses existence and stabilization problem for a hybrid neutral stochastic delay differential equations with Lévy noise (HNSDDELN). The coefficients of such systems do not satisfy the conventional linear growth conditions, but are subject to high nonlinearity. We first prove the existence and uniqueness of the solution. We then design a delay feedback controller to make an unstable HNSDDELN \\n<tex>$H_{\\\\infty }$</tex>\\n and asymptotically stable in \\n<tex>${\\\\mathbb{L}}^{p}$</tex>\\n. We end up with a numerical example that corroborates our theoretical findings.\",\"PeriodicalId\":56128,\"journal\":{\"name\":\"IMA Journal of Mathematical Control and Information\",\"volume\":\"40 1\",\"pages\":\"106-132\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Mathematical Control and Information\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10078818/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Mathematical Control and Information","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10078818/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一类具有Lévy噪声的混合中立型随机时滞微分方程(HNSDDELN)的存在性和镇定问题。这种系统的系数不满足传统的线性增长条件,但具有高度的非线性。我们首先证明了解的存在性和唯一性。然后,我们设计了一个延迟反馈控制器,使不稳定的HNSDDELN$H_{\infty}$在${\mathbb{L}}^{p}$中渐近稳定。最后我们给出了一个数值例子,证实了我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
H∞ and Asymptotic Stability via delay feedback for hybrid neutral stochastic delay differential equations with Lévy noise
This work addresses existence and stabilization problem for a hybrid neutral stochastic delay differential equations with Lévy noise (HNSDDELN). The coefficients of such systems do not satisfy the conventional linear growth conditions, but are subject to high nonlinearity. We first prove the existence and uniqueness of the solution. We then design a delay feedback controller to make an unstable HNSDDELN $H_{\infty }$ and asymptotically stable in ${\mathbb{L}}^{p}$ . We end up with a numerical example that corroborates our theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
33
审稿时长
>12 weeks
期刊介绍: The Journal is to provide an outlet for papers which are original and of high quality in mathematical control theory, systems theory, and applied information sciences. Short papers and mathematical correspondence or technical notes will be welcome, although the primary function of the journal is to publish papers of substantial length and coverage. The emphasis will be upon relevance, originality and clarify of presentation, although timeliness may well be an important feature in acceptable papers. Speculative papers that suggest new avenues for research or potential solutions to unsolved problems of control and information theory will be particularly welcome. Specific application papers will not normally be within the remit of the journal. Applications that illustrate techniques or theories will be acceptable. A prime function of the journal is to encourage the interplay between control and information theory and other mathematical sciences. All submitted papers will be judged on their merits by at least two referees and a full paper report will be available to the intending authors. Submitted articles will in general be published in an issue within six months of submission. Papers should not have previously published, nor should they be undes consideration for publication in another journal. This Journal takes publication ethics very seriously. If misconduct is found or suspected after the manuscript is published, the journal will investigate the matter and this may result in the article subsequently being retracted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信