{"title":"基于时间序列动量和下行风险的投资组合再平衡","authors":"Xiaoshi Guo;Sarah M Ryan","doi":"10.1093/imaman/dpab037","DOIUrl":null,"url":null,"abstract":"To examine the familiar tradeoff between risk and return in financial investments, we use a rolling two-stage stochastic program to compare mean-risk optimization models with time series momentum strategies. In a backtest of allocating investment between a market index and a risk-free asset, we generate scenarios of future return according to a momentum-based stochastic process model. A new hybrid approach, time series momentum strategy controlling downside risk (TSMDR), frequently dominates traditional approaches by generating trading signals according to a modified momentum measure while setting the risky asset position to control the conditional value-at-risk (CVaR) of return. For insight into the outperformance of TSMDR, we decompose each strategy into two aspects, the trading signal and the asset allocation model that determines the risky asset position. We find that 1) weighted moving average can better capture the trend of the stock market than time series momentum computed as past 12-month excess return, 2) mean-risk strategies generally provide better returns whereas risk parity strategies have less investment risk and 3) controlling CVaR limits the investment risk better than controlling variance does.","PeriodicalId":56296,"journal":{"name":"IMA Journal of Management Mathematics","volume":"34 2","pages":"355-381"},"PeriodicalIF":1.9000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/iel7/8016797/10075382/10075383.pdf","citationCount":"0","resultStr":"{\"title\":\"Portfolio rebalancing based on time series momentum and downside risk\",\"authors\":\"Xiaoshi Guo;Sarah M Ryan\",\"doi\":\"10.1093/imaman/dpab037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To examine the familiar tradeoff between risk and return in financial investments, we use a rolling two-stage stochastic program to compare mean-risk optimization models with time series momentum strategies. In a backtest of allocating investment between a market index and a risk-free asset, we generate scenarios of future return according to a momentum-based stochastic process model. A new hybrid approach, time series momentum strategy controlling downside risk (TSMDR), frequently dominates traditional approaches by generating trading signals according to a modified momentum measure while setting the risky asset position to control the conditional value-at-risk (CVaR) of return. For insight into the outperformance of TSMDR, we decompose each strategy into two aspects, the trading signal and the asset allocation model that determines the risky asset position. We find that 1) weighted moving average can better capture the trend of the stock market than time series momentum computed as past 12-month excess return, 2) mean-risk strategies generally provide better returns whereas risk parity strategies have less investment risk and 3) controlling CVaR limits the investment risk better than controlling variance does.\",\"PeriodicalId\":56296,\"journal\":{\"name\":\"IMA Journal of Management Mathematics\",\"volume\":\"34 2\",\"pages\":\"355-381\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/iel7/8016797/10075382/10075383.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Management Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10075383/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Management Mathematics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10075383/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
Portfolio rebalancing based on time series momentum and downside risk
To examine the familiar tradeoff between risk and return in financial investments, we use a rolling two-stage stochastic program to compare mean-risk optimization models with time series momentum strategies. In a backtest of allocating investment between a market index and a risk-free asset, we generate scenarios of future return according to a momentum-based stochastic process model. A new hybrid approach, time series momentum strategy controlling downside risk (TSMDR), frequently dominates traditional approaches by generating trading signals according to a modified momentum measure while setting the risky asset position to control the conditional value-at-risk (CVaR) of return. For insight into the outperformance of TSMDR, we decompose each strategy into two aspects, the trading signal and the asset allocation model that determines the risky asset position. We find that 1) weighted moving average can better capture the trend of the stock market than time series momentum computed as past 12-month excess return, 2) mean-risk strategies generally provide better returns whereas risk parity strategies have less investment risk and 3) controlling CVaR limits the investment risk better than controlling variance does.
期刊介绍:
The mission of this quarterly journal is to publish mathematical research of the highest quality, impact and relevance that can be directly utilised or have demonstrable potential to be employed by managers in profit, not-for-profit, third party and governmental/public organisations to improve their practices. Thus the research must be quantitative and of the highest quality if it is to be published in the journal. Furthermore, the outcome of the research must be ultimately useful for managers. The journal also publishes novel meta-analyses of the literature, reviews of the "state-of-the art" in a manner that provides new insight, and genuine applications of mathematics to real-world problems in the form of case studies. The journal welcomes papers dealing with topics in Operational Research and Management Science, Operations Management, Decision Sciences, Transportation Science, Marketing Science, Analytics, and Financial and Risk Modelling.