Hasse关于类数奇偶校验的Satz 45的改进版本

IF 0.3 Q4 MATHEMATICS
H. Ichimura
{"title":"Hasse关于类数奇偶校验的Satz 45的改进版本","authors":"H. Ichimura","doi":"10.21099/TKBJM/1429103720","DOIUrl":null,"url":null,"abstract":"For an imaginary abelian field K , Hasse [3, Satz 45] obtained a criterion for the relative class number to be odd in terms of the narrow class number of the maximal real subfield Kþ and the prime numbers which ramify in K , by using the analytic class number formula. In [4], we gave a refined version (1⁄4 ‘‘D-decomposed version’’) of Satz 45 by an algebraic method. In this paper, we give one more algebraic proof of the refined version.","PeriodicalId":44321,"journal":{"name":"Tsukuba Journal of Mathematics","volume":"38 1","pages":"189-199"},"PeriodicalIF":0.3000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Refined version of Hasse's Satz 45 on class number parity\",\"authors\":\"H. Ichimura\",\"doi\":\"10.21099/TKBJM/1429103720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an imaginary abelian field K , Hasse [3, Satz 45] obtained a criterion for the relative class number to be odd in terms of the narrow class number of the maximal real subfield Kþ and the prime numbers which ramify in K , by using the analytic class number formula. In [4], we gave a refined version (1⁄4 ‘‘D-decomposed version’’) of Satz 45 by an algebraic method. In this paper, we give one more algebraic proof of the refined version.\",\"PeriodicalId\":44321,\"journal\":{\"name\":\"Tsukuba Journal of Mathematics\",\"volume\":\"38 1\",\"pages\":\"189-199\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2015-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsukuba Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21099/TKBJM/1429103720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsukuba Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21099/TKBJM/1429103720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

对于虚阿贝尔域K, Hasse [3, Satz 45]利用解析类数公式,得到了最大实子域Kþ的窄类数和K中分支的素数的相对类数为奇的判据。在2010年,我们用代数方法给出了Satz 45的一个改进版本(1 / 4“d分解版本”)。在本文中,我们给出了一个改进版本的代数证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Refined version of Hasse's Satz 45 on class number parity
For an imaginary abelian field K , Hasse [3, Satz 45] obtained a criterion for the relative class number to be odd in terms of the narrow class number of the maximal real subfield Kþ and the prime numbers which ramify in K , by using the analytic class number formula. In [4], we gave a refined version (1⁄4 ‘‘D-decomposed version’’) of Satz 45 by an algebraic method. In this paper, we give one more algebraic proof of the refined version.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信