{"title":"连续体超空间的球、对称积和商","authors":"E. Casta, ñeda-Alvarado, J. Sánchez-Martínez","doi":"10.21099/tkbjm/1407938673","DOIUrl":null,"url":null,"abstract":". A continuum means a nonempty, compact and connected metric space. Given a continuum X , the symbols F n ð X Þ and C 1 ð X Þ denotes the hyperspace of all subsets of X with at most n points and the hyperspace of subcontinua of X , respectively. If n > 1, we consider the quotient spaces SF n 1 ð X Þ ¼ F n ð X Þ = F 1 ð X Þ and C 1 ð X Þ = F 1 ð X Þ obtained by shrinking F 1 ð X Þ to a point in F n ð X Þ and C 1 ð X Þ , re-spectively. In this paper, we study the continua X such that SF n 1 ð X Þ is homeomorphic to C 1 ð X Þ = F 1 ð X Þ and we analyze when the spaces F n ð X Þ and SF n 1 ð X Þ are homeomorphic to some sphere.","PeriodicalId":44321,"journal":{"name":"Tsukuba Journal of Mathematics","volume":"38 1","pages":"75-84"},"PeriodicalIF":0.3000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21099/tkbjm/1407938673","citationCount":"0","resultStr":"{\"title\":\"Spheres, symmetric products, and quotient of hyperspaces of continua\",\"authors\":\"E. Casta, ñeda-Alvarado, J. Sánchez-Martínez\",\"doi\":\"10.21099/tkbjm/1407938673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". A continuum means a nonempty, compact and connected metric space. Given a continuum X , the symbols F n ð X Þ and C 1 ð X Þ denotes the hyperspace of all subsets of X with at most n points and the hyperspace of subcontinua of X , respectively. If n > 1, we consider the quotient spaces SF n 1 ð X Þ ¼ F n ð X Þ = F 1 ð X Þ and C 1 ð X Þ = F 1 ð X Þ obtained by shrinking F 1 ð X Þ to a point in F n ð X Þ and C 1 ð X Þ , re-spectively. In this paper, we study the continua X such that SF n 1 ð X Þ is homeomorphic to C 1 ð X Þ = F 1 ð X Þ and we analyze when the spaces F n ð X Þ and SF n 1 ð X Þ are homeomorphic to some sphere.\",\"PeriodicalId\":44321,\"journal\":{\"name\":\"Tsukuba Journal of Mathematics\",\"volume\":\"38 1\",\"pages\":\"75-84\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.21099/tkbjm/1407938673\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsukuba Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21099/tkbjm/1407938673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsukuba Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21099/tkbjm/1407938673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
。连续统是指一个非空的、紧的、连通的度量空间。给定连续体X,符号fn ð X Þ和c1 ð X Þ分别表示X的所有最多n个点的子集的超空间和X的次连续体的超空间。如果n > 1,我们考虑商空间SF n 1 ð X Þ¼F n ð X Þ = F 1 ð X Þ和C 1 ð X Þ = F 1 ð X Þ分别将F 1 ð X Þ缩小到F n ð X Þ和C 1 ð X Þ中的一个点。本文研究了连续体X使SF n 1 ð X Þ同胚于C 1 ð X Þ = F 1 ð X Þ,并分析了空间F n ð X Þ与SF n 1 ð X Þ同胚于某球的情况。
Spheres, symmetric products, and quotient of hyperspaces of continua
. A continuum means a nonempty, compact and connected metric space. Given a continuum X , the symbols F n ð X Þ and C 1 ð X Þ denotes the hyperspace of all subsets of X with at most n points and the hyperspace of subcontinua of X , respectively. If n > 1, we consider the quotient spaces SF n 1 ð X Þ ¼ F n ð X Þ = F 1 ð X Þ and C 1 ð X Þ = F 1 ð X Þ obtained by shrinking F 1 ð X Þ to a point in F n ð X Þ and C 1 ð X Þ , re-spectively. In this paper, we study the continua X such that SF n 1 ð X Þ is homeomorphic to C 1 ð X Þ = F 1 ð X Þ and we analyze when the spaces F n ð X Þ and SF n 1 ð X Þ are homeomorphic to some sphere.