{"title":"广义四元数代数的Hochschild上同环","authors":"Takao Hayami","doi":"10.21099/TKBJM/1373893403","DOIUrl":null,"url":null,"abstract":". We will give an e‰cient bimodule projective resolution of the generalized quaternion Z algebra G . As a main result, we will determine the ring structure of the Hochschild cohomology HH (cid:1) ð G Þ by calculating the Yoneda products using this resolution.","PeriodicalId":44321,"journal":{"name":"Tsukuba Journal of Mathematics","volume":"37 1","pages":"13-25"},"PeriodicalIF":0.3000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hochschild cohomology ring of the generalized quaternion algebras\",\"authors\":\"Takao Hayami\",\"doi\":\"10.21099/TKBJM/1373893403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We will give an e‰cient bimodule projective resolution of the generalized quaternion Z algebra G . As a main result, we will determine the ring structure of the Hochschild cohomology HH (cid:1) ð G Þ by calculating the Yoneda products using this resolution.\",\"PeriodicalId\":44321,\"journal\":{\"name\":\"Tsukuba Journal of Mathematics\",\"volume\":\"37 1\",\"pages\":\"13-25\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsukuba Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21099/TKBJM/1373893403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsukuba Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21099/TKBJM/1373893403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
. 我们将给出广义四元数Z代数G的1‰的双模投影解析。作为主要结果,我们将通过使用该分辨率计算Yoneda积来确定Hochschild上同调HH (cid:1) ð G Þ的环结构。
Hochschild cohomology ring of the generalized quaternion algebras
. We will give an e‰cient bimodule projective resolution of the generalized quaternion Z algebra G . As a main result, we will determine the ring structure of the Hochschild cohomology HH (cid:1) ð G Þ by calculating the Yoneda products using this resolution.