{"title":"任意代数数域上半积分权的Hilbert模形式的傅里叶系数","authors":"H. Kojima","doi":"10.21099/TKBJM/1373893402","DOIUrl":null,"url":null,"abstract":"We denote by Z, Q, R and C the ring of rational integers, the rational number field, the real number field and the complex number field, respectively. We write F for an algebraic number field, d for the different of F relative to Q, o for the integral ring of F . F has r1 real archimedian primes and r2 imaginary archimedian primes. σi : F → R (1 ≤ i ≤ r1) are the mutually distinct embeddings of F to R, and σr1+j : F → C (1 ≤ j ≤ r2) are the mutually distinct imaginary conjugate embeddings of F to C such that σr1+j 6= σr1+l, σr1+j 6= σr1+l (1 ≤ j, l ≤ r2, j 6= l), σr1+j 6= σr1+j (1 ≤ j ≤ r2) and σi 6= σr1+j (1 ≤ i ≤ r1, 1 ≤ j ≤ r2). For α ∈ F , we put α = σi(α) and α (r1+j) = σr1+j(α) (1 ≤ i ≤ r1, 1 ≤ j ≤ r2). Let H = R + Ri + Rj + Rk be the Hamilton quaternion algebra, H = {z = z + wj ∈ H|z ∈ C, w > 0}, H = {z = x + iy|x ∈ R, y > 0} and D = H1 × H2 .","PeriodicalId":44321,"journal":{"name":"Tsukuba Journal of Mathematics","volume":"29 1","pages":"1-11"},"PeriodicalIF":0.3000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21099/TKBJM/1373893402","citationCount":"3","resultStr":"{\"title\":\"On the Fourier coefficients of Hilbert modular forms of half-integral weight over arbitrary algebraic number fields\",\"authors\":\"H. Kojima\",\"doi\":\"10.21099/TKBJM/1373893402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We denote by Z, Q, R and C the ring of rational integers, the rational number field, the real number field and the complex number field, respectively. We write F for an algebraic number field, d for the different of F relative to Q, o for the integral ring of F . F has r1 real archimedian primes and r2 imaginary archimedian primes. σi : F → R (1 ≤ i ≤ r1) are the mutually distinct embeddings of F to R, and σr1+j : F → C (1 ≤ j ≤ r2) are the mutually distinct imaginary conjugate embeddings of F to C such that σr1+j 6= σr1+l, σr1+j 6= σr1+l (1 ≤ j, l ≤ r2, j 6= l), σr1+j 6= σr1+j (1 ≤ j ≤ r2) and σi 6= σr1+j (1 ≤ i ≤ r1, 1 ≤ j ≤ r2). For α ∈ F , we put α = σi(α) and α (r1+j) = σr1+j(α) (1 ≤ i ≤ r1, 1 ≤ j ≤ r2). Let H = R + Ri + Rj + Rk be the Hamilton quaternion algebra, H = {z = z + wj ∈ H|z ∈ C, w > 0}, H = {z = x + iy|x ∈ R, y > 0} and D = H1 × H2 .\",\"PeriodicalId\":44321,\"journal\":{\"name\":\"Tsukuba Journal of Mathematics\",\"volume\":\"29 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.21099/TKBJM/1373893402\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsukuba Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21099/TKBJM/1373893402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsukuba Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21099/TKBJM/1373893402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
摘要
我们用Z、Q、R、C分别表示有理数环、有理数域、实数域和复数域。F表示代数数域,d表示F相对于Q的差,o表示F的积分环。F有r1个实数阿基米德素数和r2个虚数阿基米德素数。σi: F→R(1≤i≤r1)是F到R的互异嵌入,σr1+j: F→C(1≤j≤r2)是F到C的互异虚共轭嵌入,使得σr1+j 6= σr1+l(1≤j, l≤r2, j6 = l), σr1+j 6= σr1+j(1≤j≤r2), σi 6= σr1+j(1≤i≤r1, 1≤j≤r2), σi 6= σr1+j(1≤i≤r1, 1≤j≤r2)。为α∈F,我们把α=σ(α)和α(r1 + j) =σr1 + j(α)(1≤≤r1, r2 j 1≤≤)。设H = R + Ri + Rj + Rk为Hamilton四元数代数,H = {z = z + wj∈H|z∈C, w >}, H = {z = x + iy|x∈R, y > 0}, D = H1 × H2。
On the Fourier coefficients of Hilbert modular forms of half-integral weight over arbitrary algebraic number fields
We denote by Z, Q, R and C the ring of rational integers, the rational number field, the real number field and the complex number field, respectively. We write F for an algebraic number field, d for the different of F relative to Q, o for the integral ring of F . F has r1 real archimedian primes and r2 imaginary archimedian primes. σi : F → R (1 ≤ i ≤ r1) are the mutually distinct embeddings of F to R, and σr1+j : F → C (1 ≤ j ≤ r2) are the mutually distinct imaginary conjugate embeddings of F to C such that σr1+j 6= σr1+l, σr1+j 6= σr1+l (1 ≤ j, l ≤ r2, j 6= l), σr1+j 6= σr1+j (1 ≤ j ≤ r2) and σi 6= σr1+j (1 ≤ i ≤ r1, 1 ≤ j ≤ r2). For α ∈ F , we put α = σi(α) and α (r1+j) = σr1+j(α) (1 ≤ i ≤ r1, 1 ≤ j ≤ r2). Let H = R + Ri + Rj + Rk be the Hamilton quaternion algebra, H = {z = z + wj ∈ H|z ∈ C, w > 0}, H = {z = x + iy|x ∈ R, y > 0} and D = H1 × H2 .