Deslauriers-Dubuc插值尺度函数的小波伽辽金方法

IF 0.3 Q4 MATHEMATICS
N. Fukuda
{"title":"Deslauriers-Dubuc插值尺度函数的小波伽辽金方法","authors":"N. Fukuda","doi":"10.21099/TKBJM/1389972032","DOIUrl":null,"url":null,"abstract":". Compactly supported orthonormal wavelets are often used in numerical analysis. However, since these functions have not an explicit formula in the time domain, the di‰culty of integrations often occurs. In this paper, we introduce the Galerkin method with Deslauriers–Dubuc interpolating scaling functions, and we use the biorthogonality of the wavelets to overcome the di‰culties of in-tegration. We present numerical results that show the e‰ciency and accuracy of this method.","PeriodicalId":44321,"journal":{"name":"Tsukuba Journal of Mathematics","volume":"37 1","pages":"321-337"},"PeriodicalIF":0.3000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the wavelet-Galerkin method with Deslauriers-Dubuc interpolating scaling functions\",\"authors\":\"N. Fukuda\",\"doi\":\"10.21099/TKBJM/1389972032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Compactly supported orthonormal wavelets are often used in numerical analysis. However, since these functions have not an explicit formula in the time domain, the di‰culty of integrations often occurs. In this paper, we introduce the Galerkin method with Deslauriers–Dubuc interpolating scaling functions, and we use the biorthogonality of the wavelets to overcome the di‰culties of in-tegration. We present numerical results that show the e‰ciency and accuracy of this method.\",\"PeriodicalId\":44321,\"journal\":{\"name\":\"Tsukuba Journal of Mathematics\",\"volume\":\"37 1\",\"pages\":\"321-337\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tsukuba Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21099/TKBJM/1389972032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsukuba Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21099/TKBJM/1389972032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

. 紧支撑正交小波常用于数值分析。然而,由于这些函数在时域中没有明确的公式,因此经常出现积分困难。本文引入了带有Deslauriers-Dubuc插值尺度函数的Galerkin方法,并利用小波的双正交性克服了积分的困难。数值结果表明,该方法具有较高的效率和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the wavelet-Galerkin method with Deslauriers-Dubuc interpolating scaling functions
. Compactly supported orthonormal wavelets are often used in numerical analysis. However, since these functions have not an explicit formula in the time domain, the di‰culty of integrations often occurs. In this paper, we introduce the Galerkin method with Deslauriers–Dubuc interpolating scaling functions, and we use the biorthogonality of the wavelets to overcome the di‰culties of in-tegration. We present numerical results that show the e‰ciency and accuracy of this method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
14.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信