Xuanjing Li, Pengcheng Wang, Qi Pan, Gaoming Liu, Weiqiang Liu, Olatunde Omotoso, Juan Du, Zihao Li, Yang Yu, Yun Huang, Pingfen Zhu, Meng Li, Xuming Zhou
{"title":"染色体水平的亚洲象基因组组装和长寿哺乳动物的比较基因组学揭示了癌症抗性的共同替代","authors":"Xuanjing Li, Pengcheng Wang, Qi Pan, Gaoming Liu, Weiqiang Liu, Olatunde Omotoso, Juan Du, Zihao Li, Yang Yu, Yun Huang, Pingfen Zhu, Meng Li, Xuming Zhou","doi":"10.1111/acel.13917","DOIUrl":null,"url":null,"abstract":"<p>The naked mole rat (<i>Heterocephalus glaber</i>), bats (e.g., genus <i>Myotis</i>), and elephants (family Elephantidae) are known as long-lived mammals and are assumed to be excellent cancer antagonists. However, whether there are common genetic changes underpinning cancer resistance in these long-lived species is yet to be fully established. Here, we newly generated a high-quality chromosome-level Asian elephant (<i>Elephas maximus</i>) genome and identified that the expanded gene families in elephants are involved in Ras-associated and base excision repair pathways. Moreover, we performed comparative genomic analyses of 12 mammals and examined genes with signatures of positive selection in elephants, naked mole rat, and greater horseshoe bat. Residues at positively selected sites of <i>CDR2L</i> and <i>ALDH6A1</i> in these long-lived mammals enhanced the inhibition of tumor cell migration compared to those in short-lived relatives. Overall, our study provides a new genome resource and a preliminary survey of common genetic changes in long-lived mammals.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 9","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13917","citationCount":"0","resultStr":"{\"title\":\"Chromosome-level Asian elephant genome assembly and comparative genomics of long-lived mammals reveal the common substitutions for cancer resistance\",\"authors\":\"Xuanjing Li, Pengcheng Wang, Qi Pan, Gaoming Liu, Weiqiang Liu, Olatunde Omotoso, Juan Du, Zihao Li, Yang Yu, Yun Huang, Pingfen Zhu, Meng Li, Xuming Zhou\",\"doi\":\"10.1111/acel.13917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The naked mole rat (<i>Heterocephalus glaber</i>), bats (e.g., genus <i>Myotis</i>), and elephants (family Elephantidae) are known as long-lived mammals and are assumed to be excellent cancer antagonists. However, whether there are common genetic changes underpinning cancer resistance in these long-lived species is yet to be fully established. Here, we newly generated a high-quality chromosome-level Asian elephant (<i>Elephas maximus</i>) genome and identified that the expanded gene families in elephants are involved in Ras-associated and base excision repair pathways. Moreover, we performed comparative genomic analyses of 12 mammals and examined genes with signatures of positive selection in elephants, naked mole rat, and greater horseshoe bat. Residues at positively selected sites of <i>CDR2L</i> and <i>ALDH6A1</i> in these long-lived mammals enhanced the inhibition of tumor cell migration compared to those in short-lived relatives. Overall, our study provides a new genome resource and a preliminary survey of common genetic changes in long-lived mammals.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"22 9\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13917\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.13917\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.13917","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Chromosome-level Asian elephant genome assembly and comparative genomics of long-lived mammals reveal the common substitutions for cancer resistance
The naked mole rat (Heterocephalus glaber), bats (e.g., genus Myotis), and elephants (family Elephantidae) are known as long-lived mammals and are assumed to be excellent cancer antagonists. However, whether there are common genetic changes underpinning cancer resistance in these long-lived species is yet to be fully established. Here, we newly generated a high-quality chromosome-level Asian elephant (Elephas maximus) genome and identified that the expanded gene families in elephants are involved in Ras-associated and base excision repair pathways. Moreover, we performed comparative genomic analyses of 12 mammals and examined genes with signatures of positive selection in elephants, naked mole rat, and greater horseshoe bat. Residues at positively selected sites of CDR2L and ALDH6A1 in these long-lived mammals enhanced the inhibition of tumor cell migration compared to those in short-lived relatives. Overall, our study provides a new genome resource and a preliminary survey of common genetic changes in long-lived mammals.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.