Jingwen Zhang, Hao Wang, Lily Slotabec, Feng Cheng, Yi Tan, Ji Li
{"title":"衰老过程中SIRT1/SIRT3亚细胞分布的改变破坏了缺血和再灌注期间心脏代谢稳态","authors":"Jingwen Zhang, Hao Wang, Lily Slotabec, Feng Cheng, Yi Tan, Ji Li","doi":"10.1111/acel.13930","DOIUrl":null,"url":null,"abstract":"<p>Age-related sensors Sirtuin1 (SIRT1) and Sirtuin3 (SIRT3) play an essential role in the protective response upon myocardial ischemia and/or reperfusion (I/R). However, the subcellular localization and co-regulatory network between cardiac SIRT1 and SIRT3 remain unknown, especially their effects on age-related metabolic regulation during acute ischemia and I/R. Here, we found that defects of cardiac SIRT1 or SIRT3 with aging result in an exacerbated cardiac physiological structural and functional deterioration after acute ischemic stress and failed recovery through reperfusion operation. In aged hearts, SIRT1 translocated into mitochondria and recruited more mitochondria SIRT3 to enhance their interaction during acute ischemia, acting as adaptive protection for the aging hearts from further mitochondria dysfunction. Subsequently, SIRT3-targeted proteomics revealed that SIRT1 plays a crucial role in maintaining mitochondrial integrity through SIRT3-mediated substrate metabolism during acute ischemic and I/R stress. Although the loss of SIRT1/SIRT3 led to a compromised PGC-1α/PPARα-mediated transcriptional control of fatty acid oxidation in response to acute ischemia and I/R, their crosstalk in mitochondria plays a more important role in the aging heart during acute ischemia. However, the increased mitochondria SIRT1-SIRT3 interaction promoted adaptive protection to aging-related fatty acid metabolic disorder via deacetylation of long-chain acyl CoA dehydrogenase (LCAD) during ischemic insults. Therefore, the dynamic network of SIRT1/SIRT3 acts as a mediator that regulates adaptive metabolic response to improve the tolerance of aged hearts to ischemic insults, which will facilitate investigation into the role of SIRT1/SIRT3 in age-related ischemic heart disease.</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":"22 9","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13930","citationCount":"2","resultStr":"{\"title\":\"Alterations of SIRT1/SIRT3 subcellular distribution in aging undermine cardiometabolic homeostasis during ischemia and reperfusion\",\"authors\":\"Jingwen Zhang, Hao Wang, Lily Slotabec, Feng Cheng, Yi Tan, Ji Li\",\"doi\":\"10.1111/acel.13930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Age-related sensors Sirtuin1 (SIRT1) and Sirtuin3 (SIRT3) play an essential role in the protective response upon myocardial ischemia and/or reperfusion (I/R). However, the subcellular localization and co-regulatory network between cardiac SIRT1 and SIRT3 remain unknown, especially their effects on age-related metabolic regulation during acute ischemia and I/R. Here, we found that defects of cardiac SIRT1 or SIRT3 with aging result in an exacerbated cardiac physiological structural and functional deterioration after acute ischemic stress and failed recovery through reperfusion operation. In aged hearts, SIRT1 translocated into mitochondria and recruited more mitochondria SIRT3 to enhance their interaction during acute ischemia, acting as adaptive protection for the aging hearts from further mitochondria dysfunction. Subsequently, SIRT3-targeted proteomics revealed that SIRT1 plays a crucial role in maintaining mitochondrial integrity through SIRT3-mediated substrate metabolism during acute ischemic and I/R stress. Although the loss of SIRT1/SIRT3 led to a compromised PGC-1α/PPARα-mediated transcriptional control of fatty acid oxidation in response to acute ischemia and I/R, their crosstalk in mitochondria plays a more important role in the aging heart during acute ischemia. However, the increased mitochondria SIRT1-SIRT3 interaction promoted adaptive protection to aging-related fatty acid metabolic disorder via deacetylation of long-chain acyl CoA dehydrogenase (LCAD) during ischemic insults. Therefore, the dynamic network of SIRT1/SIRT3 acts as a mediator that regulates adaptive metabolic response to improve the tolerance of aged hearts to ischemic insults, which will facilitate investigation into the role of SIRT1/SIRT3 in age-related ischemic heart disease.</p>\",\"PeriodicalId\":119,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"22 9\",\"pages\":\"\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.13930\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.13930\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.13930","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Alterations of SIRT1/SIRT3 subcellular distribution in aging undermine cardiometabolic homeostasis during ischemia and reperfusion
Age-related sensors Sirtuin1 (SIRT1) and Sirtuin3 (SIRT3) play an essential role in the protective response upon myocardial ischemia and/or reperfusion (I/R). However, the subcellular localization and co-regulatory network between cardiac SIRT1 and SIRT3 remain unknown, especially their effects on age-related metabolic regulation during acute ischemia and I/R. Here, we found that defects of cardiac SIRT1 or SIRT3 with aging result in an exacerbated cardiac physiological structural and functional deterioration after acute ischemic stress and failed recovery through reperfusion operation. In aged hearts, SIRT1 translocated into mitochondria and recruited more mitochondria SIRT3 to enhance their interaction during acute ischemia, acting as adaptive protection for the aging hearts from further mitochondria dysfunction. Subsequently, SIRT3-targeted proteomics revealed that SIRT1 plays a crucial role in maintaining mitochondrial integrity through SIRT3-mediated substrate metabolism during acute ischemic and I/R stress. Although the loss of SIRT1/SIRT3 led to a compromised PGC-1α/PPARα-mediated transcriptional control of fatty acid oxidation in response to acute ischemia and I/R, their crosstalk in mitochondria plays a more important role in the aging heart during acute ischemia. However, the increased mitochondria SIRT1-SIRT3 interaction promoted adaptive protection to aging-related fatty acid metabolic disorder via deacetylation of long-chain acyl CoA dehydrogenase (LCAD) during ischemic insults. Therefore, the dynamic network of SIRT1/SIRT3 acts as a mediator that regulates adaptive metabolic response to improve the tolerance of aged hearts to ischemic insults, which will facilitate investigation into the role of SIRT1/SIRT3 in age-related ischemic heart disease.
Aging CellBiochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍:
Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health.
The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include:
Academic Search (EBSCO Publishing)
Academic Search Alumni Edition (EBSCO Publishing)
Academic Search Premier (EBSCO Publishing)
Biological Science Database (ProQuest)
CAS: Chemical Abstracts Service (ACS)
Embase (Elsevier)
InfoTrac (GALE Cengage)
Ingenta Select
ISI Alerting Services
Journal Citation Reports/Science Edition (Clarivate Analytics)
MEDLINE/PubMed (NLM)
Natural Science Collection (ProQuest)
PubMed Dietary Supplement Subset (NLM)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
Web of Science (Clarivate Analytics)
Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.