基于http的僵尸网络中数据包检测的监督分类方法

Q4 Mathematics
Felix Brezo, José Gaviria de la Puerta, Xabier Ugarte-Pedrero, I. Santos, P. G. Bringas
{"title":"基于http的僵尸网络中数据包检测的监督分类方法","authors":"Felix Brezo, José Gaviria de la Puerta, Xabier Ugarte-Pedrero, I. Santos, P. G. Bringas","doi":"10.19153/CLEIEJ.16.3.2","DOIUrl":null,"url":null,"abstract":"The possibilities that the management of a vast amount of computers and/or networks oer is attracting an increasing number of malware writers. In this document, the authors propose a methodology thought to detect malicious botnet trac, based on the analysis of the packets that ow within the network. This objective is achieved by means of the extraction of the static characteristics of packets, which are lately analysed using supervised machine learning techniques focused on trac labelling so as to proactively face the huge volume of information nowadays lters work with.","PeriodicalId":30032,"journal":{"name":"CLEI Electronic Journal","volume":"16 1","pages":"2-2"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A Supervised Classification Approach for Detecting Packets Originated in a HTTP-based Botnet\",\"authors\":\"Felix Brezo, José Gaviria de la Puerta, Xabier Ugarte-Pedrero, I. Santos, P. G. Bringas\",\"doi\":\"10.19153/CLEIEJ.16.3.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possibilities that the management of a vast amount of computers and/or networks oer is attracting an increasing number of malware writers. In this document, the authors propose a methodology thought to detect malicious botnet trac, based on the analysis of the packets that ow within the network. This objective is achieved by means of the extraction of the static characteristics of packets, which are lately analysed using supervised machine learning techniques focused on trac labelling so as to proactively face the huge volume of information nowadays lters work with.\",\"PeriodicalId\":30032,\"journal\":{\"name\":\"CLEI Electronic Journal\",\"volume\":\"16 1\",\"pages\":\"2-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CLEI Electronic Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19153/CLEIEJ.16.3.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CLEI Electronic Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19153/CLEIEJ.16.3.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 8

摘要

管理大量计算机和/或网络的可能性正在吸引越来越多的恶意软件编写者。在本文档中,作者提出了一种基于对网络中传输的数据包的分析来检测恶意僵尸网络跟踪的方法。这一目标是通过提取数据包的静态特征来实现的,这些特征最近使用集中在跟踪标签上的监督机器学习技术进行分析,以便主动面对如今信件处理的大量信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Supervised Classification Approach for Detecting Packets Originated in a HTTP-based Botnet
The possibilities that the management of a vast amount of computers and/or networks oer is attracting an increasing number of malware writers. In this document, the authors propose a methodology thought to detect malicious botnet trac, based on the analysis of the packets that ow within the network. This objective is achieved by means of the extraction of the static characteristics of packets, which are lately analysed using supervised machine learning techniques focused on trac labelling so as to proactively face the huge volume of information nowadays lters work with.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CLEI Electronic Journal
CLEI Electronic Journal Computer Science-Computer Science (miscellaneous)
CiteScore
0.70
自引率
0.00%
发文量
18
审稿时长
40 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信