铜钼浮选厂选矿回收率的估算

Q2 Materials Science
L. Vinnett, J. Yianatos, S. Flores
{"title":"铜钼浮选厂选矿回收率的估算","authors":"L. Vinnett, J. Yianatos, S. Flores","doi":"10.19150/MMP.6627","DOIUrl":null,"url":null,"abstract":"A numerical conditioning analysis for mineral recovery estimation was performed for industrial flotation plants, considering the copper (Cu), molybdenum (Mo) and iron (Fe) separability. A modified relative condition number, χ, was presented that allowed sensitivity analysis to be evaluated for the component recovery by means of an analytical formula. This closed form made it possible for the error propagation to be determined from feed, concentrate and tail grades with different orders of magnitude. The χ parameter can be evaluated using available grade data from the design criteria or historical mass balances, in which the variability is typically unknown. Reconciled data from different Cu/Mo concentrators were employed to evaluate the effect of small numerical disturbances in the grade data on the mineral recovery estimation. Higher error propagation was typically observed for Fe. The Mo minerals presented numerical problems, mainly in second cleaners and in the first cell of rougher banks. Lower condition numbers were observed for Cu due to the higher flotation rates.Mass-balance data reconciliation without redundancy was evaluated for a typical Cu/Mo flotation circuit using relative error minimization. Significant relative errors in the mineral recovery estimation were obtained with nonreconciled data in ill-conditioned problems. Negligible improvements in the mineral recovery estimation because of the data reconciliation with regard to the nonreconciled approach were obtained in well-conditioned problems. In addition, the improvements in mineral recovery estimation by using Cu, Mo and Fe in the data reconciliation were nonsignificant with respect to using only the best-conditioned component in well- and ill-conditioned problems.Despite the effort in data reconciliation and data repetition, poor performance may be obtained in ill-conditioned problems, which can deteriorate the flotation rate characterization. The error propagation has a negative impact on the mineral recovery of the first cell, which may significantly bias the flotation rate characterization of both valuable and nonvaluable elements.","PeriodicalId":18536,"journal":{"name":"Minerals & Metallurgical Processing","volume":"33 1","pages":"97-106"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.19150/MMP.6627","citationCount":"5","resultStr":"{\"title\":\"On the mineral recovery estimation in Cu/Mo flotation plants\",\"authors\":\"L. Vinnett, J. Yianatos, S. Flores\",\"doi\":\"10.19150/MMP.6627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical conditioning analysis for mineral recovery estimation was performed for industrial flotation plants, considering the copper (Cu), molybdenum (Mo) and iron (Fe) separability. A modified relative condition number, χ, was presented that allowed sensitivity analysis to be evaluated for the component recovery by means of an analytical formula. This closed form made it possible for the error propagation to be determined from feed, concentrate and tail grades with different orders of magnitude. The χ parameter can be evaluated using available grade data from the design criteria or historical mass balances, in which the variability is typically unknown. Reconciled data from different Cu/Mo concentrators were employed to evaluate the effect of small numerical disturbances in the grade data on the mineral recovery estimation. Higher error propagation was typically observed for Fe. The Mo minerals presented numerical problems, mainly in second cleaners and in the first cell of rougher banks. Lower condition numbers were observed for Cu due to the higher flotation rates.Mass-balance data reconciliation without redundancy was evaluated for a typical Cu/Mo flotation circuit using relative error minimization. Significant relative errors in the mineral recovery estimation were obtained with nonreconciled data in ill-conditioned problems. Negligible improvements in the mineral recovery estimation because of the data reconciliation with regard to the nonreconciled approach were obtained in well-conditioned problems. In addition, the improvements in mineral recovery estimation by using Cu, Mo and Fe in the data reconciliation were nonsignificant with respect to using only the best-conditioned component in well- and ill-conditioned problems.Despite the effort in data reconciliation and data repetition, poor performance may be obtained in ill-conditioned problems, which can deteriorate the flotation rate characterization. The error propagation has a negative impact on the mineral recovery of the first cell, which may significantly bias the flotation rate characterization of both valuable and nonvaluable elements.\",\"PeriodicalId\":18536,\"journal\":{\"name\":\"Minerals & Metallurgical Processing\",\"volume\":\"33 1\",\"pages\":\"97-106\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.19150/MMP.6627\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals & Metallurgical Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19150/MMP.6627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals & Metallurgical Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19150/MMP.6627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 5

摘要

考虑铜(Cu)、钼(Mo)和铁(Fe)的可选性,对工业浮选厂的选矿回收率进行了数值模拟分析。提出了一个修正的相对条件数χ,允许通过分析公式对组分回收率进行敏感性分析。这种封闭形式使得从不同数量级的进料、精料和尾料等级中确定误差传播成为可能。χ参数可以使用来自设计标准或历史质量平衡的可用品位数据进行评估,其中变异性通常是未知的。利用不同铜钼选矿厂的校正数据,对品位数据中的小数值扰动对选矿回收率估算的影响进行了评价。对于Fe,通常观察到更高的误差传播。钼矿物存在数值问题,主要出现在第二清洁层和粗糙滩的第一单元中。由于较高的浮选率,Cu的条件数较低。采用相对误差最小化方法对典型铜/钼浮选回路进行了无冗余质量平衡数据协调评价。在病态问题中,用不协调的数据估算矿物回收率时,会产生显著的相对误差。在条件良好的问题中,由于与非调和方法的数据调和,在矿物回收率估计方面的改进可以忽略不计。此外,在数据调和中使用Cu, Mo和Fe对矿物回收率估计的改进与在良好和病态问题中仅使用最佳条件分量相比并不显著。尽管在数据调和和数据重复方面做出了努力,但在病态问题中可能会得到较差的性能,从而影响浮选率表征。误差传播对第一个矿池的矿物回收率有负面影响,这可能会显著影响有价元素和无价元素的浮选率表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the mineral recovery estimation in Cu/Mo flotation plants
A numerical conditioning analysis for mineral recovery estimation was performed for industrial flotation plants, considering the copper (Cu), molybdenum (Mo) and iron (Fe) separability. A modified relative condition number, χ, was presented that allowed sensitivity analysis to be evaluated for the component recovery by means of an analytical formula. This closed form made it possible for the error propagation to be determined from feed, concentrate and tail grades with different orders of magnitude. The χ parameter can be evaluated using available grade data from the design criteria or historical mass balances, in which the variability is typically unknown. Reconciled data from different Cu/Mo concentrators were employed to evaluate the effect of small numerical disturbances in the grade data on the mineral recovery estimation. Higher error propagation was typically observed for Fe. The Mo minerals presented numerical problems, mainly in second cleaners and in the first cell of rougher banks. Lower condition numbers were observed for Cu due to the higher flotation rates.Mass-balance data reconciliation without redundancy was evaluated for a typical Cu/Mo flotation circuit using relative error minimization. Significant relative errors in the mineral recovery estimation were obtained with nonreconciled data in ill-conditioned problems. Negligible improvements in the mineral recovery estimation because of the data reconciliation with regard to the nonreconciled approach were obtained in well-conditioned problems. In addition, the improvements in mineral recovery estimation by using Cu, Mo and Fe in the data reconciliation were nonsignificant with respect to using only the best-conditioned component in well- and ill-conditioned problems.Despite the effort in data reconciliation and data repetition, poor performance may be obtained in ill-conditioned problems, which can deteriorate the flotation rate characterization. The error propagation has a negative impact on the mineral recovery of the first cell, which may significantly bias the flotation rate characterization of both valuable and nonvaluable elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minerals & Metallurgical Processing
Minerals & Metallurgical Processing 工程技术-矿业与矿物加工
CiteScore
0.84
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: For over twenty-five years, M&MP has been your source for the newest thinking in the processing of minerals and metals. We cover the latest developments in a wide range of applicable disciplines, from metallurgy to computer science to environmental engineering. Our authors, experts from industry, academia and the government, present state-of-the-art research from around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信