质量平衡EH-pH图的应用ⅰ-吉布斯相律的应用

Q2 Materials Science
R. N. Gow, H. Huang, C. Young
{"title":"质量平衡EH-pH图的应用ⅰ-吉布斯相律的应用","authors":"R. N. Gow, H. Huang, C. Young","doi":"10.19150/MMP.6622","DOIUrl":null,"url":null,"abstract":"EH-pH diagrams are useful tools in understanding how mineral surfaces react in solution and particularly how aqueous conditions can be changed to enhance mineral leaching processes. Successful application of these diagrams, however, requires that several considerations be kept in mind to prevent what had been termed as “gross errors” in their calculation and use. In this paper, the aqueous Cu-S system is used as the basis for explaining the mass-balanced method of calculating EH-pH diagrams with the STABCAL thermodynamic equilibrium software. A breakdown of the Gibbs’ Phase Rule and how it is used in STABCAL to modify the diagrams is included. The methodology was applied to the aqueous Cu-As-S system, and resulting diagrams were compared against examples of those generated using the predominant-ion method. The complexity of such diagrams increases with every additional component, and competition between species becomes more apparent, as can be seen by curvature in the resulting mass-balanced diagrams. The complete diagram for enargite (Cu3AsS4) is shown. It compares well with spectroelectrochemical measurements from Raman spectroscopy and cyclic voltammetry studies.","PeriodicalId":18536,"journal":{"name":"Minerals & Metallurgical Processing","volume":"33 1","pages":"58-67"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.19150/MMP.6622","citationCount":"8","resultStr":"{\"title\":\"Utility of mass-balanced EH-pH diagrams I — Applications of Gibbs’ Phase Rule\",\"authors\":\"R. N. Gow, H. Huang, C. Young\",\"doi\":\"10.19150/MMP.6622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"EH-pH diagrams are useful tools in understanding how mineral surfaces react in solution and particularly how aqueous conditions can be changed to enhance mineral leaching processes. Successful application of these diagrams, however, requires that several considerations be kept in mind to prevent what had been termed as “gross errors” in their calculation and use. In this paper, the aqueous Cu-S system is used as the basis for explaining the mass-balanced method of calculating EH-pH diagrams with the STABCAL thermodynamic equilibrium software. A breakdown of the Gibbs’ Phase Rule and how it is used in STABCAL to modify the diagrams is included. The methodology was applied to the aqueous Cu-As-S system, and resulting diagrams were compared against examples of those generated using the predominant-ion method. The complexity of such diagrams increases with every additional component, and competition between species becomes more apparent, as can be seen by curvature in the resulting mass-balanced diagrams. The complete diagram for enargite (Cu3AsS4) is shown. It compares well with spectroelectrochemical measurements from Raman spectroscopy and cyclic voltammetry studies.\",\"PeriodicalId\":18536,\"journal\":{\"name\":\"Minerals & Metallurgical Processing\",\"volume\":\"33 1\",\"pages\":\"58-67\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.19150/MMP.6622\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerals & Metallurgical Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19150/MMP.6622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerals & Metallurgical Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19150/MMP.6622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 8

摘要

EH-pH图是了解矿物表面在溶液中如何反应的有用工具,特别是如何改变水环境以增强矿物浸出过程。然而,这些图表的成功应用需要牢记一些考虑因素,以防止在其计算和使用中出现所谓的“严重错误”。本文以Cu-S水溶液体系为基础,介绍了用STABCAL热力学平衡软件计算EH-pH图的质量平衡方法。吉布斯相规则的分解以及如何在STABCAL中使用它来修改图。将该方法应用于Cu-As-S水溶液体系,并与主离子法生成的图进行了比较。这种图的复杂性随着每增加一个分量而增加,物种之间的竞争变得更加明显,这可以从由此产生的质量平衡图的曲率中看出。铝辉石(Cu3AsS4)的完整图解如下。它与拉曼光谱和循环伏安法研究的光谱电化学测量结果相比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utility of mass-balanced EH-pH diagrams I — Applications of Gibbs’ Phase Rule
EH-pH diagrams are useful tools in understanding how mineral surfaces react in solution and particularly how aqueous conditions can be changed to enhance mineral leaching processes. Successful application of these diagrams, however, requires that several considerations be kept in mind to prevent what had been termed as “gross errors” in their calculation and use. In this paper, the aqueous Cu-S system is used as the basis for explaining the mass-balanced method of calculating EH-pH diagrams with the STABCAL thermodynamic equilibrium software. A breakdown of the Gibbs’ Phase Rule and how it is used in STABCAL to modify the diagrams is included. The methodology was applied to the aqueous Cu-As-S system, and resulting diagrams were compared against examples of those generated using the predominant-ion method. The complexity of such diagrams increases with every additional component, and competition between species becomes more apparent, as can be seen by curvature in the resulting mass-balanced diagrams. The complete diagram for enargite (Cu3AsS4) is shown. It compares well with spectroelectrochemical measurements from Raman spectroscopy and cyclic voltammetry studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minerals & Metallurgical Processing
Minerals & Metallurgical Processing 工程技术-矿业与矿物加工
CiteScore
0.84
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: For over twenty-five years, M&MP has been your source for the newest thinking in the processing of minerals and metals. We cover the latest developments in a wide range of applicable disciplines, from metallurgy to computer science to environmental engineering. Our authors, experts from industry, academia and the government, present state-of-the-art research from around the globe.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信