S. Pérez-Rodríguez , M. Gutiérrez-Roa , C. Giménez-Rubio , D. Ríos-Ruiz , P. Arévalo-Cid , M.V. Martínez-Huerta , A. Zitolo , M.J. Lázaro , D. Sebastián
{"title":"通过旋转环盘电极评估用于CO2电还原为CO的单原子Cu-N-C催化剂","authors":"S. Pérez-Rodríguez , M. Gutiérrez-Roa , C. Giménez-Rubio , D. Ríos-Ruiz , P. Arévalo-Cid , M.V. Martínez-Huerta , A. Zitolo , M.J. Lázaro , D. Sebastián","doi":"10.1016/j.jechem.2023.09.005","DOIUrl":null,"url":null,"abstract":"<div><p>The electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogen-doped carbon xerogel (Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO<sub>2</sub>RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode (RRDE), technique still rarely explored for CO<sub>2</sub>RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-N-C catalysts are found to be active and highly CO selective at low overpotentials (from −0.6 to −0.8 V vs. RHE) in 0.1 M KHCO<sub>3</sub>, while H<sub>2</sub> from the competitive water reduction appears at larger overpotentials (−0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N<sub>4</sub> moieties exhibits a CO<sub>2</sub>-to-CO turnover frequency of 997 h<sup>−1</sup> at −0.9 V vs. RHE with a H<sub>2</sub>/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO<sub>2</sub>RR.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 169-182"},"PeriodicalIF":14.0000,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Single atom Cu-N-C catalysts for the electro-reduction of CO2 to CO assessed by rotating ring-disc electrode\",\"authors\":\"S. Pérez-Rodríguez , M. Gutiérrez-Roa , C. Giménez-Rubio , D. Ríos-Ruiz , P. Arévalo-Cid , M.V. Martínez-Huerta , A. Zitolo , M.J. Lázaro , D. Sebastián\",\"doi\":\"10.1016/j.jechem.2023.09.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The electrochemical CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogen-doped carbon xerogel (Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO<sub>2</sub>RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode (RRDE), technique still rarely explored for CO<sub>2</sub>RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-N-C catalysts are found to be active and highly CO selective at low overpotentials (from −0.6 to −0.8 V vs. RHE) in 0.1 M KHCO<sub>3</sub>, while H<sub>2</sub> from the competitive water reduction appears at larger overpotentials (−0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N<sub>4</sub> moieties exhibits a CO<sub>2</sub>-to-CO turnover frequency of 997 h<sup>−1</sup> at −0.9 V vs. RHE with a H<sub>2</sub>/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO<sub>2</sub>RR.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"88 \",\"pages\":\"Pages 169-182\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005107\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005107","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 1
摘要
将电化学CO2还原反应(CO2RR)转化为可控化学品被认为是储存间歇性可再生能源的一种很有前途的途径。本文成功地开发了一套基于铜氮掺杂碳干凝胶(Cu-N-C)的催化剂,通过改变铜的量和铜前体的性质来实现有效的CO2RR。通过旋转环盘电极(RRDE)评估Cu-N-C材料的电催化性能,该技术对CO2RR仍很少探索。为了进行比较,产品还通过在线气相色谱法在H细胞中进行了表征。在0.1 M KHCO3中,合成的Cu-N-C催化剂在低过电位(相对于RHE为−0.6至−0.8 V)下具有活性和高CO选择性,而竞争性水还原产生的H2在较大过电位(相对RHE为-0.9 V)下出现。含有Cu-N4部分的最佳乙酸铜衍生催化剂在−0.9 V下相对于RHE表现出997 h−1的CO2与CO转换频率,H2/CO比为1.8。这些结果表明,RRDE配置可以作为从CO2RR中识别电解产物的可行方法。
Single atom Cu-N-C catalysts for the electro-reduction of CO2 to CO assessed by rotating ring-disc electrode
The electrochemical CO2 reduction reaction (CO2RR) to controllable chemicals is considered as a promising pathway to store intermittent renewable energy. Herein, a set of catalysts based on copper-nitrogen-doped carbon xerogel (Cu-N-C) are successfully developed varying the copper amount and the nature of the copper precursor, for the efficient CO2RR. The electrocatalytic performance of Cu-N-C materials is assessed by a rotating ring-disc electrode (RRDE), technique still rarely explored for CO2RR. For comparison, products are also characterized by online gas chromatography in a H-cell. The as-synthesized Cu-N-C catalysts are found to be active and highly CO selective at low overpotentials (from −0.6 to −0.8 V vs. RHE) in 0.1 M KHCO3, while H2 from the competitive water reduction appears at larger overpotentials (−0.9 V vs. RHE). The optimum copper acetate-derived catalyst containing Cu-N4 moieties exhibits a CO2-to-CO turnover frequency of 997 h−1 at −0.9 V vs. RHE with a H2/CO ratio of 1.8. These results demonstrate that RRDE configuration can be used as a feasible approach for identifying electrolysis products from CO2RR.