通过氧空位和纳米结构调节ZrO2的晶体和电子结构,用于锂硫电池中的多硫化物转化

IF 14 1区 化学 Q1 CHEMISTRY, APPLIED
Shengnan Fu , Chaowei Hu , Jing Li , Hongtao Cui , Yuanyuan Liu , Kaihua Liu , Yanzhao Yang , Meiri Wang
{"title":"通过氧空位和纳米结构调节ZrO2的晶体和电子结构,用于锂硫电池中的多硫化物转化","authors":"Shengnan Fu ,&nbsp;Chaowei Hu ,&nbsp;Jing Li ,&nbsp;Hongtao Cui ,&nbsp;Yuanyuan Liu ,&nbsp;Kaihua Liu ,&nbsp;Yanzhao Yang ,&nbsp;Meiri Wang","doi":"10.1016/j.jechem.2023.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>The recent emergence of tetragonal phases zirconium dioxide (ZrO<sub>2</sub>) with vacancies has generated significant interest as a highly efficient and stable electrocatalyst with potential applications in trapping polysulfides and facilitating rapid conversion in lithium-sulfur batteries (LSBs). However, the reduction of ZrO<sub>2</sub> is challenging, even under strong reducing atmospheres at high temperatures and pressures. Consequently, the limited presence of oxygen vacancies results in insufficient active sites and reaction interfaces, thereby hindering practical implementation. Herein, we successfully introduced abundant oxygen vacancies into ZrO<sub>2</sub> at the nanoscale with the help of carbon nanotubes (CNTs-OH) through hydrogen-etching at lower temperatures and pressures. The introduced oxygen vacancies on ZrO<sub>2−</sub><em><sub>x</sub></em>/CNTs-OH can effectively rearrange charge distribution, enhance sulfiphilicity and increase active sites, contributing to high ionic and electronic transfer kinetics, strong binding energy and low redox barriers between polysulfides and ZrO<sub>2−</sub><em><sub>x</sub></em>. These findings have been experimentally validated and supported by theory calculations. As a result, LSBs assembled with the ZrO<sub>2−</sub><em><sub>x</sub></em>/CNTs-OH modified separators demonstrate excellent rate performance, superior cycling stability, and ultra-high sulfur utilization. Especially, at high sulfur loading of 6 mg cm<sup>−2</sup>, the area capacity is still up to 6.3 mA h cm<sup>−2</sup>. This work provides valuable insights into the structural and functional optimization of electrocatalysts for batteries.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 82-93"},"PeriodicalIF":14.0000,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the crystalline and electronic structure of ZrO2 via oxygen vacancies and nano-structuring for polysulfides conversion in lithium-sulfur batteries\",\"authors\":\"Shengnan Fu ,&nbsp;Chaowei Hu ,&nbsp;Jing Li ,&nbsp;Hongtao Cui ,&nbsp;Yuanyuan Liu ,&nbsp;Kaihua Liu ,&nbsp;Yanzhao Yang ,&nbsp;Meiri Wang\",\"doi\":\"10.1016/j.jechem.2023.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recent emergence of tetragonal phases zirconium dioxide (ZrO<sub>2</sub>) with vacancies has generated significant interest as a highly efficient and stable electrocatalyst with potential applications in trapping polysulfides and facilitating rapid conversion in lithium-sulfur batteries (LSBs). However, the reduction of ZrO<sub>2</sub> is challenging, even under strong reducing atmospheres at high temperatures and pressures. Consequently, the limited presence of oxygen vacancies results in insufficient active sites and reaction interfaces, thereby hindering practical implementation. Herein, we successfully introduced abundant oxygen vacancies into ZrO<sub>2</sub> at the nanoscale with the help of carbon nanotubes (CNTs-OH) through hydrogen-etching at lower temperatures and pressures. The introduced oxygen vacancies on ZrO<sub>2−</sub><em><sub>x</sub></em>/CNTs-OH can effectively rearrange charge distribution, enhance sulfiphilicity and increase active sites, contributing to high ionic and electronic transfer kinetics, strong binding energy and low redox barriers between polysulfides and ZrO<sub>2−</sub><em><sub>x</sub></em>. These findings have been experimentally validated and supported by theory calculations. As a result, LSBs assembled with the ZrO<sub>2−</sub><em><sub>x</sub></em>/CNTs-OH modified separators demonstrate excellent rate performance, superior cycling stability, and ultra-high sulfur utilization. Especially, at high sulfur loading of 6 mg cm<sup>−2</sup>, the area capacity is still up to 6.3 mA h cm<sup>−2</sup>. This work provides valuable insights into the structural and functional optimization of electrocatalysts for batteries.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"88 \",\"pages\":\"Pages 82-93\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005089\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005089","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

最近出现的具有空位的四方相二氧化锆(ZrO2)作为一种高效稳定的电催化剂,在捕获多硫化物和促进锂硫电池(LSB)中的快速转化方面具有潜在的应用,引起了人们的极大兴趣。然而,即使在高温高压的强还原气氛下,ZrO2的还原也是具有挑战性的。因此,氧空位的有限存在导致活性位点和反应界面不足,从而阻碍了实际实施。在此,我们在碳纳米管(CNTs-OH)的帮助下,通过在较低温度和压力下的氢蚀刻,成功地在纳米尺度上将丰富的氧空位引入ZrO2中。在ZrO2−x/CNTs OH上引入的氧空位可以有效地重新排列电荷分布,增强亚磺性并增加活性位点,有助于多硫化物和ZrO2−x之间的高离子和电子转移动力学、强结合能和低氧化还原势垒。这些发现得到了实验验证,并得到了理论计算的支持。因此,用ZrO2−x/CNTs OH改性隔膜组装的LSB表现出优异的倍率性能、优异的循环稳定性和超高硫利用率。特别是,在6 mg cm−2的高硫负荷下,面积容量仍然高达6.3 mA h cm−2。这项工作为电池用电催化剂的结构和功能优化提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tuning the crystalline and electronic structure of ZrO2 via oxygen vacancies and nano-structuring for polysulfides conversion in lithium-sulfur batteries

Tuning the crystalline and electronic structure of ZrO2 via oxygen vacancies and nano-structuring for polysulfides conversion in lithium-sulfur batteries

The recent emergence of tetragonal phases zirconium dioxide (ZrO2) with vacancies has generated significant interest as a highly efficient and stable electrocatalyst with potential applications in trapping polysulfides and facilitating rapid conversion in lithium-sulfur batteries (LSBs). However, the reduction of ZrO2 is challenging, even under strong reducing atmospheres at high temperatures and pressures. Consequently, the limited presence of oxygen vacancies results in insufficient active sites and reaction interfaces, thereby hindering practical implementation. Herein, we successfully introduced abundant oxygen vacancies into ZrO2 at the nanoscale with the help of carbon nanotubes (CNTs-OH) through hydrogen-etching at lower temperatures and pressures. The introduced oxygen vacancies on ZrO2−x/CNTs-OH can effectively rearrange charge distribution, enhance sulfiphilicity and increase active sites, contributing to high ionic and electronic transfer kinetics, strong binding energy and low redox barriers between polysulfides and ZrO2−x. These findings have been experimentally validated and supported by theory calculations. As a result, LSBs assembled with the ZrO2−x/CNTs-OH modified separators demonstrate excellent rate performance, superior cycling stability, and ultra-high sulfur utilization. Especially, at high sulfur loading of 6 mg cm−2, the area capacity is still up to 6.3 mA h cm−2. This work provides valuable insights into the structural and functional optimization of electrocatalysts for batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
23.60
自引率
0.00%
发文量
2875
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信