Ruiqi Cheng , Kaiqi Li , Huanxin Li , Tianshuo Zhao , Yibo Wang , Qingyue Xue , Jiao Zhang , Chaopeng Fu
{"title":"维生素C/缺陷碳范德华异质结构的合理设计,提高氧还原反应的活性、耐久性和储存稳定性","authors":"Ruiqi Cheng , Kaiqi Li , Huanxin Li , Tianshuo Zhao , Yibo Wang , Qingyue Xue , Jiao Zhang , Chaopeng Fu","doi":"10.1016/j.jechem.2023.09.011","DOIUrl":null,"url":null,"abstract":"<div><p>Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction (ORR) electrocatalysts in metal-air batteries. However, the active sites in defective carbon are easily subjected to serious oxidation or hydroxylation during ORR or storage, leading to rapid degradation of activity. Herein, we design a van der Waals heterostructure comprised of vitamin C (VC) and defective carbon (DC) to not only boost the activity but also enhance the durability and storage stability of the DC-VC electrocatalyst. The formation of VC van der Waals between DC and VC is demonstrated to be an effective strategy to protect the defect active sites from oxidation and hydroxylation degradation, thus significantly enhancing the electrochemical durability and storage anti-aging performance. Moreover, the DC-VC van der Waals can reduce the reaction energy barrier to facilitate the ORR. These findings are also confirmed by operando Fourier transform infrared spectroscopy and density functional theory calculations. It is necessary to mention that the preparation of this DC-VC electrocatalyst can be scaled up, and the ORR performance of the largely produced electrocatalyst is demonstrated to be very consistent. Furthermore, the DC-VC-based aluminum-air batteries display very competitive power density with good performance maintenance.</p></div>","PeriodicalId":67498,"journal":{"name":"能源化学","volume":"88 ","pages":"Pages 103-111"},"PeriodicalIF":14.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of vitamin C/defective carbon van der Waals heterostructure for enhanced activity, durability and storage stability toward oxygen reduction reaction\",\"authors\":\"Ruiqi Cheng , Kaiqi Li , Huanxin Li , Tianshuo Zhao , Yibo Wang , Qingyue Xue , Jiao Zhang , Chaopeng Fu\",\"doi\":\"10.1016/j.jechem.2023.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction (ORR) electrocatalysts in metal-air batteries. However, the active sites in defective carbon are easily subjected to serious oxidation or hydroxylation during ORR or storage, leading to rapid degradation of activity. Herein, we design a van der Waals heterostructure comprised of vitamin C (VC) and defective carbon (DC) to not only boost the activity but also enhance the durability and storage stability of the DC-VC electrocatalyst. The formation of VC van der Waals between DC and VC is demonstrated to be an effective strategy to protect the defect active sites from oxidation and hydroxylation degradation, thus significantly enhancing the electrochemical durability and storage anti-aging performance. Moreover, the DC-VC van der Waals can reduce the reaction energy barrier to facilitate the ORR. These findings are also confirmed by operando Fourier transform infrared spectroscopy and density functional theory calculations. It is necessary to mention that the preparation of this DC-VC electrocatalyst can be scaled up, and the ORR performance of the largely produced electrocatalyst is demonstrated to be very consistent. Furthermore, the DC-VC-based aluminum-air batteries display very competitive power density with good performance maintenance.</p></div>\",\"PeriodicalId\":67498,\"journal\":{\"name\":\"能源化学\",\"volume\":\"88 \",\"pages\":\"Pages 103-111\"},\"PeriodicalIF\":14.0000,\"publicationDate\":\"2023-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"能源化学\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2095495623005259\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"能源化学","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495623005259","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Rational design of vitamin C/defective carbon van der Waals heterostructure for enhanced activity, durability and storage stability toward oxygen reduction reaction
Metal-free defective carbon materials with abundant active sites have been widely studied as low-cost and efficient oxygen reduction reaction (ORR) electrocatalysts in metal-air batteries. However, the active sites in defective carbon are easily subjected to serious oxidation or hydroxylation during ORR or storage, leading to rapid degradation of activity. Herein, we design a van der Waals heterostructure comprised of vitamin C (VC) and defective carbon (DC) to not only boost the activity but also enhance the durability and storage stability of the DC-VC electrocatalyst. The formation of VC van der Waals between DC and VC is demonstrated to be an effective strategy to protect the defect active sites from oxidation and hydroxylation degradation, thus significantly enhancing the electrochemical durability and storage anti-aging performance. Moreover, the DC-VC van der Waals can reduce the reaction energy barrier to facilitate the ORR. These findings are also confirmed by operando Fourier transform infrared spectroscopy and density functional theory calculations. It is necessary to mention that the preparation of this DC-VC electrocatalyst can be scaled up, and the ORR performance of the largely produced electrocatalyst is demonstrated to be very consistent. Furthermore, the DC-VC-based aluminum-air batteries display very competitive power density with good performance maintenance.