Jakob R. Bentzon, A. Vural, K. Feilberg, J. Walther
{"title":"多相管流中的表面润湿","authors":"Jakob R. Bentzon, A. Vural, K. Feilberg, J. Walther","doi":"10.1615/multscientechn.2020031539","DOIUrl":null,"url":null,"abstract":"The present study examines the quantity of surface wetting in a two-phase oil and water pipe flow. The study is performed by employing an Eulerian-Eulerian CFD model using the S-gamma droplet size distribution model within Star–CCM+. In the North Sea production of oil and gas, water-phase surface processes such as scale and corrosion account for more than 40–50% of operating expenses. The objective of the model is to investigate best practices for the prediction of phase distribution aimed at evaluating the degree of the wall in contact with the water phase (water-wetting). The model is validated by performing detailed numerical simulations corresponding to the experimental studies by Kumara et al. (2009). The comparison yields good agreement with the observed measurements with slight over-prediction of the dispersion rate but accurately describing liquid holdup. The surface wetting is then evaluated with its interdependence with liquid holdup and dispersion rate.","PeriodicalId":34942,"journal":{"name":"Multiphase Science and Technology","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SURFACE WETTING IN MULTIPHASE PIPE-FLOW\",\"authors\":\"Jakob R. Bentzon, A. Vural, K. Feilberg, J. Walther\",\"doi\":\"10.1615/multscientechn.2020031539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study examines the quantity of surface wetting in a two-phase oil and water pipe flow. The study is performed by employing an Eulerian-Eulerian CFD model using the S-gamma droplet size distribution model within Star–CCM+. In the North Sea production of oil and gas, water-phase surface processes such as scale and corrosion account for more than 40–50% of operating expenses. The objective of the model is to investigate best practices for the prediction of phase distribution aimed at evaluating the degree of the wall in contact with the water phase (water-wetting). The model is validated by performing detailed numerical simulations corresponding to the experimental studies by Kumara et al. (2009). The comparison yields good agreement with the observed measurements with slight over-prediction of the dispersion rate but accurately describing liquid holdup. The surface wetting is then evaluated with its interdependence with liquid holdup and dispersion rate.\",\"PeriodicalId\":34942,\"journal\":{\"name\":\"Multiphase Science and Technology\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiphase Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/multscientechn.2020031539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiphase Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/multscientechn.2020031539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
摘要
本研究考察了油水两相管道流动中的表面润湿量。研究采用欧拉-欧拉CFD模型,采用Star-CCM +中的s - γ液滴尺寸分布模型。在北海的油气生产中,水相表面处理(如结垢和腐蚀)占运营费用的40-50%以上。该模型的目的是研究预测相分布的最佳实践,旨在评估壁面与水相接触的程度(水润湿)。通过与Kumara et al.(2009)的实验研究相对应的详细数值模拟,验证了该模型。比较结果与观察到的测量结果一致,对分散率有轻微的过度预测,但准确地描述了液含率。然后用其与液体含率和分散速率的相互关系来评估表面润湿。
The present study examines the quantity of surface wetting in a two-phase oil and water pipe flow. The study is performed by employing an Eulerian-Eulerian CFD model using the S-gamma droplet size distribution model within Star–CCM+. In the North Sea production of oil and gas, water-phase surface processes such as scale and corrosion account for more than 40–50% of operating expenses. The objective of the model is to investigate best practices for the prediction of phase distribution aimed at evaluating the degree of the wall in contact with the water phase (water-wetting). The model is validated by performing detailed numerical simulations corresponding to the experimental studies by Kumara et al. (2009). The comparison yields good agreement with the observed measurements with slight over-prediction of the dispersion rate but accurately describing liquid holdup. The surface wetting is then evaluated with its interdependence with liquid holdup and dispersion rate.
期刊介绍:
Two-phase flows commonly occur in nature and in a multitude of other settings. They are not only of academic interest but are found in a wide range of engineering applications, continuing to pose a challenge to many research scientists and industrial practitioners alike. Although many important advances have been made in the past, the efforts to understand fundamental behavior and mechanisms of two-phase flow are necessarily a continuing process. Volume 8 of Multiphase Science and Technology contains the text of the invited lectures given at the Third International Workshop on Two-Phase Flow Fundamentals sponsored by the Electric Power Research Institute (EPRI) and the U. S. Department of Energy (DOE).