{"title":"通过基于copula的g和h边际分布建模多变量操作损失","authors":"M. Bee, J. Hambuckers","doi":"10.21314/jop.2021.016","DOIUrl":null,"url":null,"abstract":"We propose a family of copula-based multivariate distributions with g-and- h marginals. After studying the properties of the distribution, we develop a two-step estimation strategy and analyze via simulation the sampling distribution of the estimators. The methodology is used for the analysis of a 7-dimensional dataset containing 40,871 operational losses. The empirical evidence suggests that a distribution based on a single copula is not flexible enough, thus we model the dependence structure by means of vine copulas. We show that the approach based on regular vines improves the fit. Moreover, even though losses corresponding to different event types are found to be dependent, the assumption of perfect positive dependence is not supported by our analysis. As a result, the Value-at-Risk of the total operational loss distribution obtained from the copula- based technique is substantially smaller at high confidence levels, with respect to the one obtained using the common practice of summing the univariate Value-at-Risks.","PeriodicalId":54030,"journal":{"name":"Journal of Operational Risk","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling multivariate operational losses via copula-based distributions with g-and-h marginals\",\"authors\":\"M. Bee, J. Hambuckers\",\"doi\":\"10.21314/jop.2021.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a family of copula-based multivariate distributions with g-and- h marginals. After studying the properties of the distribution, we develop a two-step estimation strategy and analyze via simulation the sampling distribution of the estimators. The methodology is used for the analysis of a 7-dimensional dataset containing 40,871 operational losses. The empirical evidence suggests that a distribution based on a single copula is not flexible enough, thus we model the dependence structure by means of vine copulas. We show that the approach based on regular vines improves the fit. Moreover, even though losses corresponding to different event types are found to be dependent, the assumption of perfect positive dependence is not supported by our analysis. As a result, the Value-at-Risk of the total operational loss distribution obtained from the copula- based technique is substantially smaller at high confidence levels, with respect to the one obtained using the common practice of summing the univariate Value-at-Risks.\",\"PeriodicalId\":54030,\"journal\":{\"name\":\"Journal of Operational Risk\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Operational Risk\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.21314/jop.2021.016\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Operational Risk","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.21314/jop.2021.016","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Modeling multivariate operational losses via copula-based distributions with g-and-h marginals
We propose a family of copula-based multivariate distributions with g-and- h marginals. After studying the properties of the distribution, we develop a two-step estimation strategy and analyze via simulation the sampling distribution of the estimators. The methodology is used for the analysis of a 7-dimensional dataset containing 40,871 operational losses. The empirical evidence suggests that a distribution based on a single copula is not flexible enough, thus we model the dependence structure by means of vine copulas. We show that the approach based on regular vines improves the fit. Moreover, even though losses corresponding to different event types are found to be dependent, the assumption of perfect positive dependence is not supported by our analysis. As a result, the Value-at-Risk of the total operational loss distribution obtained from the copula- based technique is substantially smaller at high confidence levels, with respect to the one obtained using the common practice of summing the univariate Value-at-Risks.
期刊介绍:
In December 2017, the Basel Committee published the final version of its standardized measurement approach (SMA) methodology, which will replace the approaches set out in Basel II (ie, the simpler standardized approaches and advanced measurement approach (AMA) that allowed use of internal models) from January 1, 2022. Independently of the Basel III rules, in order to manage and mitigate risks, they still need to be measurable by anyone. The operational risk industry needs to keep that in mind. While the purpose of the now defunct AMA was to find out the level of regulatory capital to protect a firm against operational risks, we still can – and should – use models to estimate operational risk economic capital. Without these, the task of managing and mitigating capital would be incredibly difficult. These internal models are now unshackled from regulatory requirements and can be optimized for managing the daily risks to which financial institutions are exposed. In addition, operational risk models can and should be used for stress tests and Comprehensive Capital Analysis and Review (CCAR). The Journal of Operational Risk also welcomes papers on nonfinancial risks as well as topics including, but not limited to, the following. The modeling and management of operational risk. Recent advances in techniques used to model operational risk, eg, copulas, correlation, aggregate loss distributions, Bayesian methods and extreme value theory. The pricing and hedging of operational risk and/or any risk transfer techniques. Data modeling external loss data, business control factors and scenario analysis. Models used to aggregate different types of data. Causal models that link key risk indicators and macroeconomic factors to operational losses. Regulatory issues, such as Basel II or any other local regulatory issue. Enterprise risk management. Cyber risk. Big data.