关于外部独立双意大利统治数的评论

IF 1 Q1 MATHEMATICS
L. Volkmann
{"title":"关于外部独立双意大利统治数的评论","authors":"L. Volkmann","doi":"10.18154/RWTH-2021-04723","DOIUrl":null,"url":null,"abstract":"Let \\(G\\) be a graph with vertex set \\(V(G)\\). If \\(u\\in V(G)\\), then \\(N[u]\\) is the closed neighborhood of \\(u\\). An outer-independent double Italian dominating function (OIDIDF) on a graph \\(G\\) is a function \\(f:V(G)\\longrightarrow \\{0,1,2,3\\}\\) such that if \\(f(v)\\in\\{0,1\\}\\) for a vertex \\(v\\in V(G)\\), then \\(\\sum_{x\\in N[v]}f(x)\\ge 3\\), and the set \\(\\{u\\in V(G):f(u)=0\\}\\) is independent. The weight of an OIDIDF \\(f\\) is the sum \\(\\sum_{v\\in V(G)}f(v)\\). The outer-independent double Italian domination number \\(\\gamma_{oidI}(G)\\) equals the minimum weight of an OIDIDF on \\(G\\). In this paper we present Nordhaus-Gaddum type bounds on the outer-independent double Italian domination number which improved corresponding results given in [F. Azvin, N. Jafari Rad, L. Volkmann, Bounds on the outer-independent double Italian domination number, Commun. Comb. Optim. 6 (2021), 123-136]. Furthermore, we determine the outer-independent double Italian domination number of some families of graphs.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Remarks on the outer-independent double Italian domination number\",\"authors\":\"L. Volkmann\",\"doi\":\"10.18154/RWTH-2021-04723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(G\\\\) be a graph with vertex set \\\\(V(G)\\\\). If \\\\(u\\\\in V(G)\\\\), then \\\\(N[u]\\\\) is the closed neighborhood of \\\\(u\\\\). An outer-independent double Italian dominating function (OIDIDF) on a graph \\\\(G\\\\) is a function \\\\(f:V(G)\\\\longrightarrow \\\\{0,1,2,3\\\\}\\\\) such that if \\\\(f(v)\\\\in\\\\{0,1\\\\}\\\\) for a vertex \\\\(v\\\\in V(G)\\\\), then \\\\(\\\\sum_{x\\\\in N[v]}f(x)\\\\ge 3\\\\), and the set \\\\(\\\\{u\\\\in V(G):f(u)=0\\\\}\\\\) is independent. The weight of an OIDIDF \\\\(f\\\\) is the sum \\\\(\\\\sum_{v\\\\in V(G)}f(v)\\\\). The outer-independent double Italian domination number \\\\(\\\\gamma_{oidI}(G)\\\\) equals the minimum weight of an OIDIDF on \\\\(G\\\\). In this paper we present Nordhaus-Gaddum type bounds on the outer-independent double Italian domination number which improved corresponding results given in [F. Azvin, N. Jafari Rad, L. Volkmann, Bounds on the outer-independent double Italian domination number, Commun. Comb. Optim. 6 (2021), 123-136]. Furthermore, we determine the outer-independent double Italian domination number of some families of graphs.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18154/RWTH-2021-04723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18154/RWTH-2021-04723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

设\(G\)为顶点集为\(V(G)\)的图。如果是\(u\in V(G)\),那么\(N[u]\)就是\(u\)的封闭邻域。图\(G\)上的一个外部独立的双意大利主导函数(OIDIDF)是这样一个函数\(f:V(G)\longrightarrow \{0,1,2,3\}\):如果\(f(v)\in\{0,1\}\)是顶点\(v\in V(G)\),那么\(\sum_{x\in N[v]}f(x)\ge 3\)和集合\(\{u\in V(G):f(u)=0\}\)是独立的。oiddf的权重\(f\)是总和\(\sum_{v\in V(G)}f(v)\)。外部独立的双意大利语支配数\(\gamma_{oidI}(G)\)等于\(G\)上oiddf的最小权重。本文给出了外独立双意大利支配数的Nordhaus-Gaddum型界,改进了文献[F]的相应结果。阿兹文,N. Jafari Rad, L. Volkmann,外独立双意大利统治数的边界,共同。梳子。光学学报,6(2021),123-136。进一步,我们确定了一些图族的外独立双意大利支配数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on the outer-independent double Italian domination number
Let \(G\) be a graph with vertex set \(V(G)\). If \(u\in V(G)\), then \(N[u]\) is the closed neighborhood of \(u\). An outer-independent double Italian dominating function (OIDIDF) on a graph \(G\) is a function \(f:V(G)\longrightarrow \{0,1,2,3\}\) such that if \(f(v)\in\{0,1\}\) for a vertex \(v\in V(G)\), then \(\sum_{x\in N[v]}f(x)\ge 3\), and the set \(\{u\in V(G):f(u)=0\}\) is independent. The weight of an OIDIDF \(f\) is the sum \(\sum_{v\in V(G)}f(v)\). The outer-independent double Italian domination number \(\gamma_{oidI}(G)\) equals the minimum weight of an OIDIDF on \(G\). In this paper we present Nordhaus-Gaddum type bounds on the outer-independent double Italian domination number which improved corresponding results given in [F. Azvin, N. Jafari Rad, L. Volkmann, Bounds on the outer-independent double Italian domination number, Commun. Comb. Optim. 6 (2021), 123-136]. Furthermore, we determine the outer-independent double Italian domination number of some families of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Opuscula Mathematica
Opuscula Mathematica MATHEMATICS-
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信