T. Halim, M. Burgett-Moreno, T. Donaldson, I. Clarke
{"title":"羟基磷灰石和氧化铝陶瓷碎片在CoCr表面产生的第三体磨损损伤:一个10循环金属对金属模拟器研究","authors":"T. Halim, M. Burgett-Moreno, T. Donaldson, I. Clarke","doi":"10.15438/RR.5.4.129","DOIUrl":null,"url":null,"abstract":"Ceramic particles are believed to be particularly abrasive due to their extreme hardness. Ceramic debris has been reported in retrieved total hip arthroplasty (THA) due to chipping and fracture of alumina components or by flaking of hydroxyapatite from implant coatings. However there appears to be no abrasion ranking of such particle behavior. The hypotheses in this study were, i) alumina particles would create large scratches in CoCr surfaces and ii) hydroxyapatite would produce very mild scratching comparable to bone-cement particles. Hydroxyapatite beads came in two types of commercial powders while the flakes were scraped from retrieved femoral stems. Alumina beads came in two commercial powders and flakes were retrieved from a fractured ceramic head. Particle morphologies were determined by SEM and CoCr surface damage by interferometry and SEM. Six 38-mm MOM were mounted inverted in a hip simulator and run with ceramic particles inserted for a 10-second test. Surface-roughness ranking after 10-second abrasion test revealed that bone cement and hydroxyapatite produced least damage to CoCr surfaces while alumina produced the most. Alumina increased surface roughness 19-fold greater than either hydroxyapatite or bone-cement particles. The alumina debris produced numerous scratches typically 20-80 µm wide with some up to 140µm wide. Surprisingly the alumina beads and flakes were pulverized within the 10-second test interval and remained adherent to the CoCr surfaces. Additionally, the hydroxyapatite although also a ceramic had no more effect on CoCr than the bone-cement debris. Use of well-characterized and commercially available alumina and hydroxyapatite powders appeared advantageous for abrasion tests. These new data indicated that such ceramic powders have merit.","PeriodicalId":20884,"journal":{"name":"Reconstructive Review","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Third-body Wear Damage Produced in CoCr Surfaces by Hydroxyapatite and Alumina Ceramic Debris: A 10-cycle Metal-on-Metal Simulator Study\",\"authors\":\"T. Halim, M. Burgett-Moreno, T. Donaldson, I. Clarke\",\"doi\":\"10.15438/RR.5.4.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ceramic particles are believed to be particularly abrasive due to their extreme hardness. Ceramic debris has been reported in retrieved total hip arthroplasty (THA) due to chipping and fracture of alumina components or by flaking of hydroxyapatite from implant coatings. However there appears to be no abrasion ranking of such particle behavior. The hypotheses in this study were, i) alumina particles would create large scratches in CoCr surfaces and ii) hydroxyapatite would produce very mild scratching comparable to bone-cement particles. Hydroxyapatite beads came in two types of commercial powders while the flakes were scraped from retrieved femoral stems. Alumina beads came in two commercial powders and flakes were retrieved from a fractured ceramic head. Particle morphologies were determined by SEM and CoCr surface damage by interferometry and SEM. Six 38-mm MOM were mounted inverted in a hip simulator and run with ceramic particles inserted for a 10-second test. Surface-roughness ranking after 10-second abrasion test revealed that bone cement and hydroxyapatite produced least damage to CoCr surfaces while alumina produced the most. Alumina increased surface roughness 19-fold greater than either hydroxyapatite or bone-cement particles. The alumina debris produced numerous scratches typically 20-80 µm wide with some up to 140µm wide. Surprisingly the alumina beads and flakes were pulverized within the 10-second test interval and remained adherent to the CoCr surfaces. Additionally, the hydroxyapatite although also a ceramic had no more effect on CoCr than the bone-cement debris. Use of well-characterized and commercially available alumina and hydroxyapatite powders appeared advantageous for abrasion tests. These new data indicated that such ceramic powders have merit.\",\"PeriodicalId\":20884,\"journal\":{\"name\":\"Reconstructive Review\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reconstructive Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15438/RR.5.4.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reconstructive Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15438/RR.5.4.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Third-body Wear Damage Produced in CoCr Surfaces by Hydroxyapatite and Alumina Ceramic Debris: A 10-cycle Metal-on-Metal Simulator Study
Ceramic particles are believed to be particularly abrasive due to their extreme hardness. Ceramic debris has been reported in retrieved total hip arthroplasty (THA) due to chipping and fracture of alumina components or by flaking of hydroxyapatite from implant coatings. However there appears to be no abrasion ranking of such particle behavior. The hypotheses in this study were, i) alumina particles would create large scratches in CoCr surfaces and ii) hydroxyapatite would produce very mild scratching comparable to bone-cement particles. Hydroxyapatite beads came in two types of commercial powders while the flakes were scraped from retrieved femoral stems. Alumina beads came in two commercial powders and flakes were retrieved from a fractured ceramic head. Particle morphologies were determined by SEM and CoCr surface damage by interferometry and SEM. Six 38-mm MOM were mounted inverted in a hip simulator and run with ceramic particles inserted for a 10-second test. Surface-roughness ranking after 10-second abrasion test revealed that bone cement and hydroxyapatite produced least damage to CoCr surfaces while alumina produced the most. Alumina increased surface roughness 19-fold greater than either hydroxyapatite or bone-cement particles. The alumina debris produced numerous scratches typically 20-80 µm wide with some up to 140µm wide. Surprisingly the alumina beads and flakes were pulverized within the 10-second test interval and remained adherent to the CoCr surfaces. Additionally, the hydroxyapatite although also a ceramic had no more effect on CoCr than the bone-cement debris. Use of well-characterized and commercially available alumina and hydroxyapatite powders appeared advantageous for abrasion tests. These new data indicated that such ceramic powders have merit.