{"title":"HMGB1和RAGE对前列腺癌临床病理及预后的影响","authors":"D. Lv","doi":"10.20517/jtgg.2021.34","DOIUrl":null,"url":null,"abstract":"As a DNA-binding protein, high mobility group box 1 (HMGB1) has been shown be involved in various biological activities, including transcription regulation, DNA repair, genomic stability, and extracellular signaling. Accumulating evidence indicates that HMGB1 has an important role in biological processes in cancer. Moreover, HMGB1 has been shown to have intracellular and extracellular roles, activating key cancerogenic signaling pathways. The main signal pathway is activated via the interaction of HMGB1 with its receptor, receptor for advanced glycation end-products (RAGE). In addition, overexpression of HMGB1/RAGE occurs in certain types of primary tumors and has been linked to increased metastasis and poorer prognosis. In our previous research, we demonstrated that co-expression of HMGB1 and RAGE is associated with cancer progression and poor patient outcome in prostate cancer (PCa). Together with the recent published evidence, we describe and speculate on the character of the HMGB1/RAGE axis in PCa progression and elaborate on future prospects for the application of potential strategies to target HMGB1 in PCa therapy.","PeriodicalId":73999,"journal":{"name":"Journal of translational genetics and genomics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The effect of HMGB1 and RAGE on the clinicopathological and prognostic features of prostate cancer\",\"authors\":\"D. Lv\",\"doi\":\"10.20517/jtgg.2021.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a DNA-binding protein, high mobility group box 1 (HMGB1) has been shown be involved in various biological activities, including transcription regulation, DNA repair, genomic stability, and extracellular signaling. Accumulating evidence indicates that HMGB1 has an important role in biological processes in cancer. Moreover, HMGB1 has been shown to have intracellular and extracellular roles, activating key cancerogenic signaling pathways. The main signal pathway is activated via the interaction of HMGB1 with its receptor, receptor for advanced glycation end-products (RAGE). In addition, overexpression of HMGB1/RAGE occurs in certain types of primary tumors and has been linked to increased metastasis and poorer prognosis. In our previous research, we demonstrated that co-expression of HMGB1 and RAGE is associated with cancer progression and poor patient outcome in prostate cancer (PCa). Together with the recent published evidence, we describe and speculate on the character of the HMGB1/RAGE axis in PCa progression and elaborate on future prospects for the application of potential strategies to target HMGB1 in PCa therapy.\",\"PeriodicalId\":73999,\"journal\":{\"name\":\"Journal of translational genetics and genomics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of translational genetics and genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/jtgg.2021.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of translational genetics and genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/jtgg.2021.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The effect of HMGB1 and RAGE on the clinicopathological and prognostic features of prostate cancer
As a DNA-binding protein, high mobility group box 1 (HMGB1) has been shown be involved in various biological activities, including transcription regulation, DNA repair, genomic stability, and extracellular signaling. Accumulating evidence indicates that HMGB1 has an important role in biological processes in cancer. Moreover, HMGB1 has been shown to have intracellular and extracellular roles, activating key cancerogenic signaling pathways. The main signal pathway is activated via the interaction of HMGB1 with its receptor, receptor for advanced glycation end-products (RAGE). In addition, overexpression of HMGB1/RAGE occurs in certain types of primary tumors and has been linked to increased metastasis and poorer prognosis. In our previous research, we demonstrated that co-expression of HMGB1 and RAGE is associated with cancer progression and poor patient outcome in prostate cancer (PCa). Together with the recent published evidence, we describe and speculate on the character of the HMGB1/RAGE axis in PCa progression and elaborate on future prospects for the application of potential strategies to target HMGB1 in PCa therapy.